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The logistic regression model is one of the modern statistical methods developed to
predict the set of quantitative variables (nominal or monotonous), and it is considered as
an alternative test for the simple and multiple linear regression equation as well as it is
subject to the model concepts in terms of the possibility of testing the effect of the overall
pattern of the group of independent variables on the dependent variable and in terms of its
use For concepts of standard matching criteria, and in some cases there is a correlation
between the explanatory variables which leads to contrast variation and this problem is
called the problem of Multicollinearity. This research included an article review to
estimate the parameters of the logistic regression model in several biased ways to reduce
the problem of multicollinearity between the variables. These methods were compared

through the use of the mean square error (MSE) standard. The methods presented in the
research have been applied to Monte Carlo simulation data to evaluate the performance of
the methods and compare them, as well as the application to real data and the simulation
results and the real application that the logistic ridge estimator is the best of other method.
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1- Introduction

Regression is a statistical method that specializes in studying the relationship between a dependent variable
and one or several other independent variables, resulting in a mathematical equation where this relationship
represents the best representation. The logistic regression model is a special case of the generalized linear
model which is the most common in analyzing metadata and is a logarithmic transformation of linear
regression, and it has several types, but the most common is the analysis of the binary logistic regression
that we will use in our research without other types of logistic regression. it is a more powerful tool because
it provides a test of the significance of parameters, and it also gives the researcher an idea of how much the
independent variable affects the qualitative dependent variable dual value In addition, it sees the effect of
independent variables, which allows the researcher to conclude that a variable is considered stronger than
the other variable in understanding the appearance of the desired result, and that the logistic regression
analysis can include qualitative independent variables The effect of the interaction between the independent
variables in the two-valued dependent variable [Abbas,2012]. The researcher faces many problems, most of
which are the lack of analysis hypotheses when using the method of ordinary least squares, including the
problem of multicollinearity that affects the results of estimates and tests, and this problem appears as a
result of an association between explanatory variables that lead to giving weak estimates that cannot be
relied upon as the variations of these The capabilities are amplified and unacceptable and the (OLS)
method is not able to give good estimates when there is a linear relationship between the explanatory
variables.

2- Logistic Regression

The logistic regression model is an important statistical model in analyzing binary data (0 or 1) as the
primary goal of most studies is to analyze and evaluate relationships between a set of variables to obtain a
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formula by which we describe the model and uses the logistic regression model to describe the relationship
between the response variable of the discontinuous type and the explanatory variables, prediction,
estimation and control of the values of the dependent variable according to the changes in the values of the
variable with interpretation [Farhood, 2014]. One of the characteristics of the binary response logistic
regression is that the dependent variable (Y) of the response variable follows the Bernoulli distribution
taking the value (1) with a probability of (1) probability of success, and a value (0) with a probability (1- x)
of failure probability [Qasim,2011]. As we work in linear regression whose independent and dependent
variables take continuous values, the model that links the variables is as follows:

Y =0+ X+ 1)

Since (Y): represents a continuous observational variable and assuming that the average values of (YY)
observation or actual at a given value of the variable x which is E(Y) and that the variable e represents a
random error, then the model can be written as follows:

E(YIX) =PBo + X (2)
In regression (the other end), it is known that models have values (-oo,+ o), but when the variable (Y) is:
EXIX)=B(F=1=m 3)

Thus, the value of the right side is confined between the two numbers (0.1), and thus the model is not
applicable from the regression point of view, and one of the methods of solving this problem is to enter an
appropriate mathematical transformation on the dependent variable (Y). Since (0 <x < 1), then the ratio (7 /
(1-m)) is a positive amount confined between (0, ) i.e. (0 <7/ (1-w) < ) and taking the natural logarithm
For the base (¢) of the amount (n / (1-m)) the value field becomes between (-0, + o0) and is ((-o< loge (7 /
(1-m)) < o). Therefore, the regression model can be written in the case of one explanatory variable as
follows:

loge (=) = fo + B X (4)

But if we have more than one explanatory variable, then the model is formulated as follows:

loge (=) =po+ X0, B %; (5

As:i1=123, ... , N B1, B2y «wv v v, By Directed for features to be estimated. X;;: are explanatory
variables.

As for (n / (1-m)) odds of success rate or preference ratio for the desired event and its mathematical formula
are as follows:

P(Y=1) _ _Bo+3P_ BjXij
ro=p ¢ ' ©)

The probability formula for the logistic regression model is written as follows:

eXB
T = 11Xk ™

And the amount Loge(r / (1-n)) is called the logs odds of success logarithm. Logistic regression does not
require many assumptions. It only requires that there is no correlation between the explanatory variables
and that the volume of observations is large in each group that is assumed to be greater than five times the
number of parameters used in the final model [Demosthenes, 2006]. The estimation of the parameters of
the logistic regression model is carried out using the Maximum Likelihood Method (ML), which is one of
the most famous estimation methods in statistics. Assuming that the observations are independent, the
logarithmic likelihood function is defined by the following formula: [Hosmer and Lemeshow, 2000]
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L= Yiloglm) + (1~ ¥)log( - m) )

i=1

By maximizing the likelihood function (L) and taking the derivative with respect to the parameters () and
equating the result of the equation with zero, the possibility function is given as:

R ACEED ©)

Since equation (9) is a nonlinear parameter, some special methods should be used to obtain the appropriate
solutions. Therefore, Iteratively Re-Weighted Lest Squares (IRLS) can be applied to obtain appropriate
solutions. The maximum likelihood estimator (MLE) of the parameters (B) can be found using the IRLS
algorithm as follows:

Burs = STXWZ (10)
As S = XWX, W = dlag(ﬁl(l — ﬁl)) N Zi = log(ﬁl)

One disadvantage of using MLE is that MSE becomes bulky when explanatory variables are Linear
dependent, which is called the problem of multicollinearity. A condition number (CN) has been developed
to test the existence of the problem of multicollinearity between the variables known as the following
formula:

i 1/2
CN =| Zmx 11
(/Imin j ( )

max !

CN <10 this means there is no problem of multicollinearity between the explanatory variables and if it is
10< CN <30 then there is a problem of moderate multicollinearity between the explanatory variables and if
the value CN> 30 This means that there is a strong multicollinearity problem between the explanatory
variables [Inan and Erdogan, 2013] Also when the eigenvalue root values of the matrix (S) are close to
zero, this indicates that there is a problem of multicollinearity between the variables and this will lead to an
increase in the value of (MSE) .The value of the mean square error of equation (10) is found according to
the following formula: [Siray et al. 2015]

As: 4 Amin They represent the largest and smallest eigenvalue roots of the matrix (S), if the value of

MSE(u) =Y. @)

As: A represent the eigenvalue roots of the matrix (S).

3- Ridge Estimator

When there is multicollinearity, the maximum likelihood estimator method (ML) suffer from inflation in
the variations of the estimated parameters and the occurrence of instability, and this inflation is represented
by the diagonal elements of the matrix (S). To solve this problem, [Schaefer et al., 1984] suggested a
logistic ridge estimator (LRE) that was first introduced by 1970 (Horal & Kennard), and used it to estimate
the parameters for the Multiple Linear Regression Model. This method is summarized by adding a small
positive constant quantity (k) whose value falls between zero and one (0< k <1) to the diagonal elements of
the information matrix (S) to obtain more accurate estimator, and this method works to decouple the links
between the explanatory variables and the logistic character estimator is defined according to the formula
next: [Mansson and Shukur, 2011] and [Kibria et al. , 2012]

BALRE = (S + kl)_l X WZ (13)
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The estimator (ML) can be considered a special case of equation (13) when the value of (k = 0). The value
of k in logistic regression models is found according to one of the following common formulas: [Schaefer
et al., 1984] & [Smith et al., 1991]

k=ﬁ;ﬁ, k=A’LA ’ k=A,p—+Al (14)
By Puc BuLPuL By Puc
The value of the average square error of equation (13) is found according to the following
formula:
A p A +k%a? . :7/BML 4 i
MSE (fse) =Y (11 +k)zj (15) As: and 7 represent the eigenvalue vectors of
i (4

the matrix (S).
4-  Liu Estimator

Liu's logistic estimator was defined by the scientist (Mansson et al., 2012) as another solution to the
problem of multicollinearity, and Liu's logistic estimator denoted by symbol (LLE) was defined according
to the following formula:

Bue= S+ DS +dD) By (16)

As: (0<d <1) is the biasing parameter, regardless of the value of (d), the value of (MSE) of the Liu logistic
value (LLE) is less than the value (MSE) of maximum likelihood estimate (ML). The value of d is found
according to the following formula: [Mansson et al. 2012]

i((af—l)/uj +1)?)
dye =max(0,—= ) an
Z((zja,.2+1)//1,.(,1,. +1)?)

The value of the average square error of equation (16) is found according to the following formula:

MSE(BLLE ) = Zp:

j=1

((/lj+d)2 +(d —1)2aj2] )

(A 12+ A +1)?
i(4;+D (4; +D

5- Liu-Type Logistic Estimator
The Liu-Type estimator was suggested as a substitute for the ridge regression estimator in the linear
regression, which was defined by the following formula:

N g -1 _- A
Bure = (XX + k1) (XX +dD) Boss (19)
As: (-0 <d <o), (k> 0) and 8 represent the estimated value of the parameter B in the least squares method.

To take into account the problem of strong linear interrelationship, a Liu-Type logistic estimator has been
proposed, which can be defined according to the following formula:

Brire = (S+kD7YS +dI) fus (20)

And that the value of the average square error of the above equation is found according to the following
formula:

MSE(ﬁLLTE )= Zp: (/1] 9 + @-k) ! J (21)

S 2,4+ (4, +k)

6- Tow-parameter Logistic Estimator
The Tow-parameter estimator was suggested by [Asar and Genc, 2017] as an alternative to the ridge
regression estimator in a linear regression that was defined by the formula:
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Brree = (XX + k1) (XX + kdl) foss (22)

As: (0 <d <1), (k>0) and S8 represent the estimated value of the parameter p in the least squares method and
in the ridge logistic regression model, the estimator with two parameters denoted by the symbol (LTPE) is
defined according to the following formula:

Burpe = (S+ kDS + kdl) By, (23)

We note that Brpgcombines between two different estimators, which are the liu logistic estimator (LLE)
and the ridge logistic estimator (LRE), if the value of (k=1) in equation (23) we get the liu logistic
estimator Br.gand if the value of (k=0) in equation (23) We get the maximum likelihood estimator Byy.and
when the value of (d = 0) in equation (23) we get the ridge logistic estimator B zg. And that the value of the
average square error of equation (23) is found according to the following formula:

R p
MSE(ﬁLTPE )= z
j=1
7- The practical side:
1- Simulation: For the purpose of obtaining the best capabilities, Monte Carlo simulation was
used to compare the above mentioned criteria by using the standard comparison of the
average squares of error. The data was generated using the MATLAB program where sample
sizes were chosen (n = 50,120,200), The following formula was used to generate the
explanatory variables:

Xij=A=pH"?wi+pwy,  i=12,..,n&j=12,..,p (25)

[(/1]+kd)2 k*(d-1)e, j (2

2O 1K (4 1K)
N AT

As: p represents the value of the correlation between the explanatory variables in the studied model, and
values were taken (o =0.90,0.95,0.99).

n: represents the number of observation.
p: represents the number of related variables and values are taken ~ (p =5,10).
w;;: represents random numbers that follow the standard normal distribution.
Wip: represents the values of the last column of the columns of the generated variables.
The response variable for (n) of observations was found according to the formula of the
logistic regression model:

~B(2PX ) (26)

1+exp(X )

p

And B=P,=PBs=...=Pp and the feature values were determined Z ﬂj =1[Kibria, 2003]. The experiment
j=1

was repeated (1000) times. And the mean square error (MSE) is calculated according to the following

formula:
1 1000

MSE(B,) = 155 2. (B = A (B = ) (27)

As: f3, represents (B s Bire s Bue s Bure » Buee ) Respectively

We conclude from the results of Table (1) the following three points:

1- As the correlation coefficient value increases, the MSE value increases when taking all the probabilities
of the number of explanatory variables (p) and the sample size (n). In addition, the estimated performance
(LRE) is better than the rest of the estimators.

2- The more the number of explanatory variables (p) increases, the value of (MSE) increases, and this
increase affects the quantity of estimators. However, the estimated performance (LRE) is better than the
rest of the estimators.

3- As the sample size increases, the value of MSE decreases when taking different values for each
correlation coefficient and the number of explanatory variables.
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Table (1): shows MSE values for different values of p, p, n for data generated for each of
the capabilities ML, LRE, LLE, LLTE, LTPE.

= = il TRE TLE TLTE LTRE

33013 gTi17 ETTE! T4 70 O, 7454

owE FATER T ITHEN 4 4TEN T HOTH T T&87H

0 ee T T AOTR 0. TI07 AR ELE G ROTE

i 1] N1ES OIETS 0wy OYET4 O84S

> 120 6% T &6TE T T T &6T6 O.5517 O 3537
oo EOITh IO B OITo TEETT el bt ]

oen o3y o373 O FTYE o473 [ e Bl

aoes T 0766 (I e I TOTE0 O 3TIS [ el

0.86 “ 202 1.3145 Bl 202X 1.942I8 18854

oen TATd T ITGRE 4T T 45637 T 4578

oy 160 46874 TETIA T, 4874 T U058 TATES

-] T RTEE T RTES T EIEE (R-FE-T1 ] TEOTYY

T aETs ET] (T BT ET ]

p=10 12 L T OhED T OORD Y OOED T T0TE T TO%0
Oee TRIG ‘N FEkd TR TT &aREG TAE0T

680 11878 Ta3778 T Ta78 1778 03778

(e aes 30K N L) =k1-1] TRTTT GR L EE

086 108230 1 B488 10,6250 4.01X3 $.3131

2- Real data: Data were taken that dealt with anemia on two levels, namely acute anemia that was
symbolized (0), and chronic anemia, which was symbolized (1). The explanatory variables are the gender
represented by the variable (X;), the age represented by the variable (X,), the hemoglobin ratio (hp)
represented by the variable (X3), the ferritin ratio in the blood represented by the variable (X,), the retic
count(They are immature red blood cells) ratio represented by the variable (Xs), the MCV ratio represented
by the variable (Xg), iron deficiency in the blood represented by the variable (X5), the rate of transferrin in
the blood represented by the variable (Xg), the cause of poverty is hemorrhage represented by the variable
(Xo) anemia, chronic diseases represented by variable (Xy0), and anemia is a decrease in blood cells Red
represented by the variable (X1). After conducting the initial data analysis in the Minitab program, he
found the following:

1- The number of people with severe anemia is (67) patients with a percentage of 47.9%, while those with
chronic anemia are (73) patients with a rate of 52.1% as shown in Table (2).
Table (2): Shows the number of patients with anemia.

Types of anemia Number of people with types of the The proportion of
disease injured
Severe anemia 67 47.9
Chronic anemia 73 52.1
Total 140 100.0

2- As for the number of males and females in the sample, they were as in Table (3) as follows:

Table (3): Shows the number of males and females in the sample.

Male and female number Male and female ratio
Male 83 59.3
Female 57 40.7
Total 140 100.0

To test the existence of the problem of linear relationship between the data, the eigenvalue roots of the
matrix (S) were found and the values of the roots were as shown in Table (4), as we note that the value of
CN = 726.9358 is greater than (30) and this is evidence of the existence of a problem of multicollinearity
between the explanatory variables.

Table (4): shows the values of the eigenvalue roots of the matrix (S).

& Ay As Ay I B I O I I

143077 33144.1 1762.75 31.27 13.65 7.12 2.35 1.8 0.93 0.27 0.38
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The following table shows the estimated binary logistic regression parameters, standard error, and MSE
values for each of the ML, LRE, LLE, LLTE, and LTPE estimators. We note that the best estimation is
LRE having the lowest value for MSE.

Table (5): shows the estimated parameters, standard error, and MSE values for ML, LRE, LLE,

LLTE, LTPE.

ML LRE LLE LLTE LTPE

MSE 86453 83803 53973 68510 8.6447
- 25023 25777 25784 88625 25012

A (2.54) (2.530) (2.533) (71.507) (2.54)
- 0.166 0.168 0.168 -0.606 0.166

A (0.085) (0.085) (0.085) (239) (0.085)
p -3.620 3339 -3.380 -2963 -3.6193

A (1.437) (1432) (1433) (40.452) (1.437)
- 0401 04 02 -1.096 0401

By (0.031) (0.031) (0.031) (0.863) (0.031)
. _10.773 ~10.688 -19.692 3713 -19.773

A (1.712) (1.706) (1.708) (48.204) (1.712)
p 2457 1432 2435 7763 1457

Bs [0357) (0.355) (0.356) (10.041) (0357
- 1073 1004 1085 7622 1074

B, (0.802) (0.799) (0.800) (22.591) (0.802)
- -39.755 -30387 -39.463 -157 188 -39.751

B (4372) (4355) (436) (123.074) (43715)
. 19347 13946 19.036 221363 10344

A (4.965) (4.947) (4952 (139.788) (4.965)
> -8.609 8396 8573 14336 -8.600

Ao (3.605) (3.581) (3.595) (101.495) (3.605)
- 369 4716 -3.692 6386 -3.690

B (2.398) (2.3891) (2392) (67.514) (2.398)

8- Conclusions:
1- The simulation results showed that the best way to address the problem of multicollinearity is the ridge
logistic regression method.
2- The higher the correlation coefficient value, the greater the MSE value.
3- The more the number of explanatory variables (p) increases, the value of (MSE) increases, and that this
increase affects the amount of estimators, however the estimated performance (LRE) is better than the rest
of the estimators.
4- As the sample size increases, the value of (MSE) decreases when taking different values for each
correlation coefficient and the number of explanatory variables.
5- The results of the application on the data showed the fact that the ridge logistic regression method is the
best method presented in the search because it has the lowest value for the average squares of the error,
and that the value of the standard error for the estimated parameters was almost close to all methods.
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