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 The proposed method in this paper dealt with the problem of data contamination in the 

Cox Proportional Hazards Regression model (CPHRM) by using Wavelet Shrinkage to 

de-noise data, calculating the discrete wavelet transformation coefficients for wavelets 

(Symlets and Daubechies), and thresholding methods (Universal, Minimax, and SURE), as 

well as thresholding rules (Soft and Hard). A software in the MATLAB language built for 

this propose will compare the proposed and classical method using simulation and real 

data. All the proposed methods have better efficiency than the classical method in 

estimating the Cox Proportional hazards model depending on both average of Akaike and 

Bayesian information criterion. 
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Introduction 

There are two major regression models used for censored data: proportional hazards (PH) model for Cox as 

a semi-parametric method (Cox, 1972) and accelerated failure time (AFT) models as a parametric method, 

e.g. Exponential, Weibull, and Lognormal distributions are parametric models lead to some benefits 

(Lawless, 1998). However, Cox regression is the most widely employed model in survival analysis. 

 In addition, the Cox model is widely used because it is reliable, the estimated risks are never negative, and 

the hazard ratio can be computed (Singh, 2011). The Cox model has played a vital role in applied survival 

analysis during the last three decades. The model and its software implementations have popularized 

survival analysis and made it accessible to researchers in varied disciplines who are not necessarily 

statisticians. It has been so successful that it is probably used in most practical analyses of the effects of 

covariates on survival (Royston, and Lambert, 2011). In order to calculate and test regression coefficients, 

even when all of the parametric model's assumptions are met, the CPHRM, has high efficiency when it is 

parametric models (for example, the Weibull and Gamma model with proportional hazards). When 

parametric model assumptions are not available (for example, when a Weibull and Gamma model are 

employed but the data is not from the Weibull and Gamma survival distribution respectively, resulting in 

an erroneous model choice), the CPHRM analysis is more efficient than parametric models (Harrell, 2015). 

Also, the CRPHM assumes two parts: that the proportional hazard (PH) is constant with time, while PH are 

variables have a log-linear relationship (Ekman, 2017).  

On the other hand, wavelets are a good tool for the approximation of high dimensional functions, which 

feature dominant directions of the periodicity. One-dimensional shift invariant spaces and tensor-product 
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wavelets are generalized to multivariate shift invariant spaces on non-tensor-product systems. The 

estimation of the non-parametric regression model in the (AFT) model under right random censorship and 

investigate the asymptotic rates of convergence of estimators based on thresholding of empirical wavelet 

coefficients (Linyuan et al. 2006). Wavelet Estimates with censored data are considered, to investigate the 

asymptotic rates of convergence of estimators by using thresholding of wavelet coefficients (Linyuan et al. 

2007). Yogendra et al. (2010) discuss estimation of the density derivative by using wavelets methods by 

using randomly-censored data and extend the results to asymptotic convergence rates due to Prakasa Rao 

(1996) and Chaubey et al. (2008) under random censorship model. Eddy (2011) suggest approach in 

estimating the function suitable compactly supported wavelets like the Daubechies, Symlets or Coiflets 

family of wavelets, the smoothness and time-frequency properties of these wavelets allow us to find an 

asymptotically estimators of the slope coefficient of the linear model. Rogério (2016) suggest extraction of 

an observation in the presence of random noise by wavelet shrinkage has been studied under assumptions 

that the contaminate is independent and identically distributed and that the samples are evenly spaced with 

time. Xing et al. (2017), discuss the estimation a models with censored data by using wavelet method when 

the survival function and the censoring times has a stationary α-mixing sequence, and of the wavelet 

estimators for varying functions. Christophe et al. (2019) suggest a deal with the estimation of a non-

parametric regression with both additive and contaminate, for uniform multiplicative contaminate is 

considered, and develop a projection estimator by using a several wavelets. Jinru et al. (2020), explained 

the wavelet estimators of censored mixture density and discuss their point wise asymptotic convergence 

rates.   

2. Cox proportional hazard Regression model: 

The CPHRM is as in the following formula: 

     1exp, ][
10  


p

i ii xthtxh   

 Where pxxx ,,, 21    is a collection of covariate  th0   for all explanatory factors, the baseline hazard 

time t represents the hazard for a person with a value of 0. 
p ,,, 10    are regression coefficient 

which is estimated by the partial likelihood method (Aako and Are, 2020). 

The main advantages of the Cox PH model  

1- without estimate h_0 (t) we can estimate the parameters (β_i ) 

2- we don't have to assume that h_0 (t) follows a Weibull model, or a Gamma model, or any another 

parametric model. 

CPHRM assumptions: 

1- The h_0 (t) is non-parametric. 

2- On the log-rate scale, covariate effects are additive and linear. 

3- Proportional hazards: Over time, the ratio of hazard rates for two groups remains constant. 

4- Time t is "automatically" adjusted. 

Time-dependent and time-independent variables are the two types of covariates used in survival analysis. 

2.1. Tim-dependent Covariates 

Whereas time-dependent covariates are those whose values do change over time. Time-dependent 

covariates are further categorized into two types, internal and external covariates. Kalbfleisch and Prentice 

claim that (Aako and Are, 2020), If a time-dependent covariate meets the criteria, it is termed external. 

        ],|[],|[ uTuXtXPuTuXtXP  for all u, t, such that 0 < u < t. This means that at 

although the covariate could affect the hazard function over time, its upcoming path up to every time t > u 

The occurrence of a failure at time u has no effect. in another way, exogenous variables do not need the 

survival of a subject to exist. An external covariate is one whose value is known in advance at any moment 

in the future, such as a subject's age or a drug's recommended dose during a research (Liu, 2005). 

In the other hand Time-dependent variables may be readily incorporated into the model to account for 

characteristics that vary over time. the hazard function is defined as:  

Let  tZ ij
   are independent variables (  covariate of the   unit under observation), for ni ,,2,1  , 

pj ,,2,1  , and t and t is an observation with time scale. The notation Z_ij (t) indicates that the value 
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of   varies as a values with time scale. Then the CPHRM with time-dependent covariates specifies that the 

hazard rate for the   individual as in the following formula: 

        2βexp0 tZthth ii   

  th0  is the baseline hazard rate, Z_ij (t)  is a vector by   dimension of independent variables for unit i and 

that may be either fixed or dependent time, and  is a regression coefficients for vector by    p1  

dimension. The advantages of the CPHRM over other types of time-to-event methods is the  th0  can be 

left unspecified in practice. The functional form that a practitioner should perform is that  th0  is a non-

negative value of t. For researchers with weak substantive theory for the hazard shape when Z_ij (t)  =0, 

The CPHRM model is more flexible. However, because it assumes proportional hazards (PHs), the 

CPHRM places a significant limitation on the data. Time-dependent Value of variable differs over time 

Hazard ratio (HR) formula (3), (Gail et al., 2007): 

    ̂     [∑  ̂ 
 
      

      ]                                                           (3) 

When X_i^*=(X_1^*,X_2^*,…,X_p^*) and X_i = (X_1,X_2,…,X_p) 

2.2. Time-independent Covariates 

Independent variables (Covariates) whose values do not vary with time are said to be time-independent 

(Aako and Are, 2020). Time-independent The value of the variable remains constant throughout time, 

whereas the exponential expression includes X but not t. The X in this case are known as time-independent 

X. Moreover, the hazard ratio comparing any two specifications of X predictors is constant throughout 

time, according to the (PH) assumption underpinning the Cox PH model. This indicates that the risk posed 

by one individual is proportionate to the risk posed by any other individual, with the proportionality 

constant remaining constant throughout time. the cox PH model with time-independent covariates in the 

formula (4), (Gail et al., 2007). 

     4exp, ][
10  


p

j jiji xthtXh   

 2.3. Time-independent and dependent covariates 

Both time-independent and time-dependent predictor variables, we can write the extended Cox model that 

incorporates both types, as in the following formula:   

Where   time-independent,   time-dependent. 

       5exp, ][ 1 2

1 10   


p

j

p

r rirjiji txxthtXh   

Where 
1

,,, 21 pi XXXX   time-independent,        tXtXtXtX pr 2
,,, 21   time-dependent. 

3. Wavelet Shrinkage 

Wavelet shrinkage is well established technique for removing the noise present in the observation, while 

preserving the significant features of the original data (Donoho, 1994). The wavelet shrinkage based on 

thresholding of the wavelet coefficients. 

3.1. Wavelet  

Wavelet are small waves that can be grouped together to form larger waves or different waves. A few 

fundamental waves were used, stretched in infinitely many ways, and moved in infinitely many ways to 

produce a wavelet system that could make an accurate model of any wave. Consider generating an 

orthogonal wavelet basis for functions   (the space of square integrable real functions), starting 

with two parent wavelet: the scaling function   (also called farther wavelet) and the mother wavelet  . 

Other wavelets are then generated by dilations and translations of  and 
 
 (Donald et al., 2004). The 

dilation and translated of the functions are defined by formulas (6) and (7). 

)6(,)2(2)( 2

, zqkqyy kk
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The discrete wavelet transform (DWT) is a widely applicable observation processing algorithm that is used 

in various applications, for instance, science, engineering, mathematics and computer science. DWT 

decomposes an observation by using scaled and shifted versions of a compact supported basis function 

(mother wavelet), and provides multiresolution representation of the observation (Iolanda, 2007).  

Given a vector of an observation y consisting of 
k2  observations, where k is an integer and the DWT of y 

due to formula (8).   

)8(ywW   

Where w is wavelet matrix with   nn  dimensions,  is a vector with  1n   dimensions  including 

both scaling and wavelet coefficients. The vector of wavelet coefficients can by organized into  1k   

vectors.  Tkk VWWWW 021 ,,...,,  . At each DWT, the approximation coefficients are divided into bands 

using the same wavelet as before, with the result that the details are appended with the details of the latest 

decomposition, as in the following formula: 

)9(y
00

0

1 k

T

k

k

k k

T

k
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At each level (k), the observations can be reconstructed of the de-noise data (reduce of the contamination) 

by the inverse DWT (Ramazan et al., 2002). 

3.2 Thresholding 

Thresholding is the simplest method of non-linear wavelet de-noising, in which sub dividing the wavelet 

coefficient in to two sets, one of which represents signal while the other represents noise. There are 

different rules to apply the thresholds of the wavelet coefficients, and several different methods for 

choosing a threshold value exist such as: 

A. Universal Threshold Method 

 Donoho and Johnstone (1994) submitted universal threshold method, which is given by formula (10). 

  )10(2ˆ nLogMAD

U    

 Where 
MAD̂    is the standard deviation estimator of details coefficients, and equal to  . Where MAD is the 

median absolute deviation of the wavelet coefficients at the finest scale. 

B. Minimax Threshold Method  

 The optimal minimax threshold method submitted by Donoho and Johonstone, (1994) as an improvement 

to the universal threshold method, Minimax is based on an estimator   that attains to the minimax risk, as:  

 
 

  )11(,
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 Where  ixff   and  ixff
~~

 , denote the vectors of true and estimated sample values. The threshold 

minimax estimator is different from universal counter parts, in which the minimax threshold method is 

concentration on reducing the overall mean square error (MSE) but the estimates are not over-smoothing.  

C. SURE Threshold Method 

 The sure threshold proposed by Donoho and Johonstone (1994), which based upon the minimization of 

stein's risk estimator. In sure threshold method specifies a threshold estimate of   at each level  k  for the 

wavelet coefficients, and then for the soft threshold estimator we have. 

)13(),min(}:{2),(
0





d

k
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a wavelet coefficients in the k

th
 level, and then, select 
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minimizes SURE  W, . 
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Where   be a wavelet coefficients in the kth level, and then, select   that minimizes SURE  . 

3.3 Thresholding Rules 

There are many rules for the thresholding. The two types used in this research will be discussed. 

A. Soft Thresholding  

 The other standard technique for wavelet de-noising is Soft thresholding of the wavelet coefficient, also 

proposed by Donoho and Johnostone, which is defined as follows (Jeena, 2013). 
     )15( WnWnsignWn s  
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Coefficients smaller than threshold are set to zero, and additionally all coefficients greater than threshold 

are reduced by the amount of threshold. Thus, the Soft thresholding is a continuous mapping.   

B. Hard Thresholding  

 Donoho and Johnstone proposed Hard thresholding, it is a simplest scheme thresholding interpreting the 

statement of (keep or kill). The Hard thresholding used straightforward technique for implementing 

wavelet de-noising (Katsuyuki, 2021). The wavelet coefficient is set to the vector Wn(H) with element. 

)18(
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WnifWn

Wnif
Wn H  

coefficients exceeding   are left untouched, while smaller than or equal to    are eliminated or set to 0. 

Thus, the operation of hard thresholding is not continuous mapping.  

4. Proposed method  

The proposed method included dealt with the problem of Cox Proportional hazards model       data 

contamination, by using Wavelet Shrinkage. First, the discrete transformation coefficients  tW  for a 

wavelet  tw  (e.g. Symlets and Daubechies wavelets) composed of two parts (wavelet and scaling 

functions) are calculated from formula (19): 

     19,,2,1;(t) nthtwtW    

Using the first level of discrete wavelet coefficients 
0,1W , 

1,1W , … ,   12,1 nW   The threshold level   is 

estimated by one of the methods (e.g. SURE, Minimax, and Universal threshold) for estimating the 

threshold level as formulas (10), (11), and (14).  

The threshold level   is estimated by one of the methods (e.g. SURE, Minimax, and Universal threshold) 

for estimating the threshold level as formulas (10), (11), and (14).  

Thresholding rules, Soft and Hard are used to keep or kill the discrete wavelet coefficients obtained from 

the formulas (15) and (18), depending on the threshold level estimated  , such that discrete wavelet 

coefficients  below of    are zeroed (kill) and above of   are keep. More clearly, large coefficients that 

are greater than   remain unchanged, while those that are less than or equal to  are deleted or are a set of 

zero.  Thus, we get the modified discrete wavelet transformation coefficients  , then it is used to compute 

the inverse of the modified discrete wavelet transform as in formula (20). 

    20(t) tMWInvhw   

Finally, the proposed wavelet Cox Proportional hazards model is obtained in the formula (21) and which 

has less contamination. 

     21exp, ][
10  


p
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Formula (21) represents the proposed model without the time-dependent covariates, while formula (22) 

represents the proposed model with the time-dependent covariates and which also has less contamination. 

       22exp, ][ 21

110  


p

k kk

p

i ii txxthtxhw   

 5. Evaluation criteria 

Akaike information criterion (AIC) and Bayesian information criterion (BIC) which depend on Log-

likelihood (LL) will be used as selection criteria for the models. The model with the lowest value of AIC 

and BIC term appears the best model to Cox PH regression (Rinku and Manash 2016).  

   2322AIC pKLL   

     24Ln.2BIC nKLL   

6. Experimental and Application  

For case the time-independent and dependent covariates, simulation data visualizations (Appendix -

program-1). Three cases were selected for the sample size (100, 200, and 300). It was assumed that there 

are five covariates, three of which are not time-dependent and two are time-dependent from an 

autoregressive model AR(1), with 8.01   and  8.02  , for the first simulation with n = 100. The 

vector regression parameters were also imposed  T5.05.0175.05.0  . Noises with a Laplace 

distribution  25.0,0L  are added to the Cox PH model, dependent variable without noise and with noise 

for the first simulation with n = 100 shown figure (1). The 60% data is censored, and 40% is uncensored, 

with constant hazard rate (0.1) as initial value. 

 
Figure (1): Dependent variable without noise and with noise 

 For the purpose of the comparison between the proposed and classical method in estimating the CPHRM, 

also the experiment was repeated to (1000) times and the average criteria for AIC and BIC was calculated. 

Two wavelets (Sym2) and (db13) were used with different methods in estimating the threshold level 

(SURE, Minimax, and Universal), for two threshold rule (Soft and Hard), and for different samples (100, 

200, and 300). The results are summarized in Tables (1-3). 

Table (1): Average of criteria AIC and BIC for (1000) when n = 100 

Method Wavelet Threshold Method Threshold Rule AIC BIC 

Proposed Sym2 SURE Soft 293.69 304.73 

Sym2 SURE Hard 294.06 305.09 

Sym2 Minimax Soft 293.41 304.43 

Sym2 Minimax Hard 294.16 305.19 

Sym2 Universal Soft 293.07 304.09 

Sym2 Universal Hard 293.30 304.33 

db13 SURE Soft 293.54 304.57 

db13 SURE Hard 294.18 305.21 

db13 Minimax Soft 293.29 304.31 

db13 Minimax Hard 294.09 305.12 

db13 Universal Soft 293.04 304.07 

db13 Universal Hard 293.49 304.51 

Classical 294.35 305.37 
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Table (2): Average of criteria AIC and BIC for (1000) when n = 200 

Method Wavelet Threshold Method Threshold Rule AIC BIC 

Proposed Sym2 SURE Soft 692.56 707.05 

Sym2 SURE Hard 693.36 707.85 

Sym2 Minimax Soft 691.68 706.17 

Sym2 Minimax Hard 693.17 707.66 

Sym2 Universal Soft 689.92 704.42 

Sym2 Universal Hard 691.06 705.55 

db13 SURE Soft 691.21 705.70 

db13 SURE Hard 692.79 707.29 

db13 Minimax Soft 690.15 704.64 

db13 Minimax Hard 692.97 707.47 

db13 Universal Soft 688.08 702.57 

db13 Universal Hard 689.27 703.76 

Classical 693.09 707.58 

 

Table (3): Average of criteria AIC and BIC for (1000) when n = 300 

Method Wavelet Threshold Method Threshold Rule AIC BIC 

Proposed Sym2 SURE Soft 1133.2 1149.7 

Sym2 SURE Hard 1134.1 1150.7 

Sym2 Minimax Soft 1132.4 1148.9 

Sym2 Minimax Hard 1134.3 1150.8 

Sym2 Universal Soft 1130.6 1147.1 

Sym2 Universal Hard 1131.4 1147.9 

db13 SURE Soft 1131.2 1147.7 

db13 SURE Hard 1133.5 1150.0 

db13 Minimax Soft 1130.5 1147.0 

db13 Minimax Hard 1134.0 1150.5 

db13 Universal Soft 1128.0 1144.5 

db13 Universal Hard 1129.8 1146.3 

Classical 1134.4 1150.9 

 

 Tables (1–3) show that all the proposed methods have better efficiency than the classical method in 

estimating the Cox PH model depending on both average of criteria (AIC and BIC) for various selected 

samples, except the case (n = 200), for the (Sym2) wavelet, SURE and Minimax threshold method, Hard 

rule. Also, (db13) wavelet with Universal threshold method and Soft threshold rule was the best efficient 

compared with all other proposed methods and with the classical method because it has the lowest average 

of both criterions and for various selected samples (AIC = 293.04, BIC = 304.07), (AIC = 688.08, BIC = 

702.57), and (AIC = 1128.0, BIC = 1144.5) respectively. For most simulation experiments, (db13) Wavelet 

was better than (Sym2), Also Universal threshold method was better than SURE and Minimax, and Soft 

rule better than Hard for all cases. Note that the average values of the two criterions increase with the 

increase in the sample size, any decrease in the efficiency of the proposed and classical estimated models if 

the sample size increases. 

6.2 Application Part 

 This Application shows how to fit of the CPHRM from panel data, years of observed of loan status 

represent dependent variable. For the model includes only time independent predictors, any information 

that remains constant throughout the life of the loan. Just a set of points and vintage information, when 

creating loans as an independent predictor of time, because it is the degree given to borrowers at the 

beginning of the loan, and the return is constant throughout the life of the loan. 

 CPHRM is a semi parametric method to adjusting survival rate estimates to quantify the impact of 

independent variables. The method represents the effects of independent variables as a multiplier of a  . 

The hazard function is the nonparametric part of the Cox PH regression function, whereas the effect of the 
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independent variables is a log-linear regression. To fit the model, the sample data is randomly split into 

two parts. First, split the data into training (60% of data equal to 58092 observations from 96820). The 

hypotheses to be tested are as follows: 

:0H  The model is unfit vs. :1H  The model is fit 

2,10:0: 10  jHvsH jj   

  The model is unfit vs.   The model is fit 

  

Table (4): Classical Cox PH Mode 

Cases available Beta S.E. Z p-

value 

Chi-

square 

p-

value 

AIC BIC 

Event 3917 -0.6960 0.0368 -18.888 0.000 
1017.5 0.000 84470 84493 

Censored 54175 -1.2747 0.0454 -28.060 0.000 

Total 58092         

l 

 Table (4) shows that the data included (3917) observations event and (54175) censored, and the classical 

Cox PH Model is fit, because the value of chi-square (1017.5) for overall (score) is greater than its 

tabulated value under the significance level ( = 0.05) and degrees of freedom (2) which is equal to (5.99), 

p-value equal to zero and its less than  . The classical Cox regression coefficients (-0.6960 and -1.2747) are 

significant because the absolute values of Z (18.888 and 28.060) respectively are greater than tabulated 

value (1.96), p-values equal to zero and its less than  . 

 The efficiency of the classical CPHRM is represented by the criterion AIC, which is equal to (84470), and 

the criterion BIC, which is equal to (84492). The baseline cumulative HR can be converted to the hazard 

rate h, except for adding a step for analysis. The Classical CPHRM assumes that the observation time is 

measured as a continuous variable. The coxphfit function in MATLAB supports methods for handling 

joins in a time variable. 

Also, CPHRM will be estimated by proposed method, depending on the wavelet shrinkage represented by 

the (sym2) wavelet, with SURE threshold method for estimating the threshold level, and using the soft 

threshold. Using the same covariates (score group and vintage information) and data generated previously. 

To fit the proposed CPHRM, and to test the previous hypotheses. 

Table (5): Proposed Cox PH Model 

Cases available Beta S.E. Z p-

value 

Chi-

square 

p-

value 

AIC BIC 

Event 3917 -0.7037 0.0368 -19.098 0.000 
1038.7 0.000 83754 83776 

Censored 54174 -1.2861 0.0454 -28.311 0.000 

Censoredb 1         

Total 58092         

 

 Table (5) shows that the data included (3917) observations event, (54174) censored, and censored cases 

before the earliest event in a stratum (Censoredb) equal to one. The proposed Cox PH Model is fit, because 

the value of chi-square (1038.7) for overall (score) is greater than its tabulated value under the significance 

level  and degrees of freedom (2) which is equal to (5.99), p-value equal to zero and its less than  . The 

proposed Cox regression coefficients (-0.7037 and -1.2861) are significant because the absolute values of Z 

(19.098 and 28.311) respectively are greater than tabulated value (1.96), p-values equal to zero and its less 

than  . The efficiency of the proposed Cox PH Model is represented by the criterion AIC, which is equal to 

(83754), and the criterion BIC, which is equal to (83776). The baseline cumulative hazard rate H can be 

converted to the hazard rate h as before, the proposed Cox PH model assumes that the observation time is 

measured as a continuous variable and after the wavelet shrinkage procedure, the data became continuous, 

which was used in the account classical Survival, One Minus Survival, Hazard, and LML Function at mean 

of covariates. 

To comparison of the proposed method (Wavelet shrinkage) with the classical method of estimating the 

Cox PH model. Starting with the data of the first sample, table (4) and (5) shows that the proposed method 

is better than the classical method for the data of the first experiment from the simulation, because the 



 Iraqi Journal of Statistical Sciences, Vol. 19, No. 1,2022 ,  Pp. (17-29) 

25 

 

values of AIC and BIC (83754 and 83776) respectively for the proposed method was less than AIC and 

BIC (84470 and 84492) respectively for the classical method. The Chi-square value to test the significance 

of the proposed estimated model was greater than the classical model, and also its estimated parameters 

with the stability of the standard error values for both models. 

 The proposed Cox PH model estimated has a continuous variable, while the classical method for the data 

of the first experiment from simulation had a discrete variable, as clear in computing and plotting of 

proposed and classical functions for Survival, One Minus Survival, Hazard, and LML Function at mean of 

covariates, in the Figures (2-5). 

 
  

Figure (2): Classical and proposed Survival Function at mean of covariates 

 
Figure (3): Classical and Proposed One Minus Survival Function at mean of covariates 

 
Figure (4): Classical and Proposed Cum Hazard Function at mean of covariates 
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Figure (5): Classical and Proposed LML Function at mean of covariates 

 For the purpose of generalizing the results of the comparison between the proposed and classical method in 

estimating the Cox PH model, the application was repeated to (1000) times and the average criteria for AIC 

and BIC was calculated. Two wavelets (Sym2) and (db13) were used with different methods in estimating 

the threshold level (SURE, Minimax, and Universal), for two threshold rule (Soft and Hard), and for 

different samples (0.9 of the original data set equal to 87138, 0.6 of the original data set equal to 58092, 

and 0.3 of the original data set equal to 29046). The results are summarized in Tables (6-8). 

Table (6): Average of criteria AIC and BIC for (1000) times, when n = 87138 

Method Wavelet Threshold Method Threshold Rule AIC BIC 

Proposed Sym2 SURE Soft 129800 129820 

Sym2 SURE Hard 130090 130120 

Sym2 Minimax Soft 125250 125270 

Sym2 Minimax Hard 125610 125630 

Sym2 Universal Soft 121250 121280 

Sym2 Universal Hard 121740 121760 

db13 SURE Soft 129740 129760 

db13 SURE Hard 130007 130100 

db13 Minimax Soft 123450 123480 

db13 Minimax Hard 124010 124030 

db13 Universal Soft 120610 120640 

db13 Universal Hard 120790 120820 

Classical 130910 130930 

 

Table (7): Average of criteria AIC and BIC for (1000) times, when n = 58092 

Method Wavelet Threshold Method Threshold Rule AIC BIC 

Proposed Sym2 SURE Soft 83367 83389 

Sym2 SURE Hard 83562 83584 

Sym2 Minimax Soft 80331 80353 

Sym2 Minimax Hard 80572 80594 

Sym2 Universal Soft 77667 77689 

Sym2 Universal Hard 77992 78014 

db13 SURE Soft 83324 83346 

db13 SURE Hard 83546 83568 

db13 Minimax Soft 79133 79155 

db13 Minimax Hard 79503 79525 

db13 Universal Soft 77239 77261 

db13 Universal Hard 77359 77381 

Classical 84103 84124 
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Table (8): Average of criteria AIC and BIC for (1000) times, when n = 29046 

Method Wavelet Threshold Method Threshold Rule AIC BIC 

Proposed Sym2 SURE Soft 38984 39004 

Sym2 SURE Hard 39082 39102 

Sym2 Minimax Soft 37466 37487 

Sym2 Minimax Hard 37586 37607 

Sym2 Universal Soft 36135 36156 

Sym2 Universal Hard 36299 36320 

db13 SURE Soft 38964 38984 

db13 SURE Hard 39075 39095 

db13 Minimax Soft 36867 36888 

db13 Minimax Hard 37052 37072 

db13 Universal Soft 35921 35941 

db13 Universal Hard 35981 36002 

Classical 39353 39374 

 

 Tables (6–8) show that all the proposed methods have better efficiency than the classical method in 

estimating the Cox PH model depending on both average of criteria (AIC and BIC) for various selected 

samples. And db13 wavelet with Universal threshold method and Soft threshold rule was the best efficient 

compared with all other proposed methods and with the classical method because it has the lowest average 

of both criterions and for various selected samples (AIC = 120610, BIC = 120640), (AIC = 77239, BIC = 

77261), and (AIC = 35921, BIC = 35941) respectively. For all applications, (db13) Wavelet was better 

than (Sym2), Universal threshold method was better than SURE and Minimax, and Soft rule better than 

Hard. Also note that the average values of the two criterions increase with the increase in the sample size, 

any decrease in the efficiency of the proposed and classical estimated models if the sample size increases. 

7. Conclusions 

1. The proposed methods (Wavelet shrinkage) have better efficiency than the classical method in 

estimating the Cox PH model depending on both average of criteria (AIC and BIC) for various selected 

samples (for simulation and application). 

2. Db13 wavelet with Universal threshold method and Soft threshold rule was the best efficient compared 

with all other proposed methods and with the classical method for various selected samples (for simulation 

and applications). 

3. For most simulation experiments and applications, (db13) Wavelet was better than (Sym2), Also 

Universal threshold method was better than SURE and Minimax, and Soft rule better than Hard for all 

cases.   

4. The average values of the two criterions increase with the increase in the sample size, any decrease in 

the efficiency of the proposed and classical estimated models if the sample size increases (for simulation 

and applications). 

5. For the application process, the proposed method converted the data from discrete to continuous 

distribution. 

8. Recommendations 

1. Considering the proposed method for estimating the Cox PH model. 

2. The use of other types of orthogonal wavelets, methods for estimating the threshold level, and the 

thresholding rules in estimating the Cox PH model. 

3. Conducting future studies to estimate the parameters Weibull, Gomppertz, and Log-Logistic Regression 

model using Wavelet Shrinkage. 

4. Using a Bayesian approach with Wavelet Shrinkage in estimation the Cox PH model. 

Appendix 

% Program 

clc 

clear all 

%rng('default') 

 n=300;p1=3;p2=2;K=p1+p2;v1=.5;ru1=.8;ru2=-.8; 
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for j=1:1000 

x=rand(n,p1)*v1; Censored=[ones(.6*n,1);zeros(0.4*n,1)]; e1=randn(n,1); x1=zeros(n,1); x1(1)=e1(1); 

e2=randn(n,1);x2=zeros(n,1);x2(1)=e2(1); beta1=[.5 .75 1]';beta2=[.5 -.5]'; h0=.1; 

for i=2:n 

    x1(i)=ru1*x1(i-1)+e1(i);  x2(i)=ru2*x2(i-1)+e2(i);  

end 

corrcoef(x2(1:n-1),x2(2:n)); plot(x2(1:n-1),x2(2:n),'.'); 

% The noise 

lambda=0.5;mu=0;b=.25;u=rand(1,n);v=-log(u)/lambda; z=randn(1,n);noise=(mu+b*sqrt(2*v).*z)'*10;  

ht=h0.*exp((x*beta1+[x1 x2]*beta2))+noise; 

[bCoxTD,logl,HCoxTD,stats] = ... 

    coxphfit([x x1 x2],... 

    ht,... 

    'Censoring',Censored,... 

    'Baseline',0); 

AIC(j)=-2*logl+2*(K+1);BIC(j)=-2*logl+log(n)*K; 

% proposed 

XD = wdenoise(ht,'Wavelet','db13', 'DenoisingMethod','universal','ThresholdRule','soft'); 

[bCoxTD,logl,HCoxTD,stats] = ... 

    coxphfit([x x1 x2],... 

    XD,... 

    'Censoring',Censored,... 

    'Baseline',0); 

AICw(j)=-2*logl+2*(K+1);BICw(j)=-2*logl+log(n)*K; 

end 

MAIC=mean(AIC); MAICw=mean(AICw); 

MBIC=mean(BIC); MBICw=mean(BICw);  

[MAIC MBIC MAICw MBICw] 
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 إستخجام التقميص السهيجي في أنسهذج إنحجار كهكس لمسخاطخ الشدبية )دراسة محاكاة(

 طه حسين علي و جوانا رستم قادر

 

 ، العخاقالجين، اربيلقدم الاحراء والسعمهماتية، كمية الادارة ولاقتراد، جامعة صلاح 
 

 الخلاصة

تم في هحا البحث إقتخاح معالجة مذكمة تمهث البيانات في أنسهذج كهكس لمسخاطخ الشدبية باستخجام التقميص السهيجي، من خلال حداب 
 ، و (Minimax)،  (Universal) ، وطخائق العتبة (Daubechies) و (Symlets) معاملات التحهيل السهيجي الستقطع، لمسهيجات 

(SURE)  كحلك قهاعج العتبة )الشاعسة والرمبة(. سيتم أيزاً السقارنة بين الطخائق السقتخحة والتقميجية باستخجام السحاكاة والبيانات ،
والسرسم لهحا الغخض. كانت جسيع الطخائق السقتخحة تتستع بكفاءة أفزل من  MATLAB الحقيقية، التطبيق تم من خلال بخنامج بمغة

 .(Bayesian)و (Akaike) التقميجية في تقجيخ أنسهذج كهكس لمسخاطخ الشدبية اعتساداً عمى متهسط معيار معمهماتالطخيقة 
 ، انكساش السهيجات ، قهاعج العتبة. Cox PH: نسهذج الكمسات الجالة

 


