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1. Introduction

The inverse Gaussian regression model (IGRM) has been widely used in industrial engineering, life testing,
reliability, marketing, and social sciences [1-7]. “Specifically, IGRM is used when the response variable
under the study is positively skewed [8-10]. When the response variable is extremely skewness, the IGRM
is preferable than gamma regression model [11]. In dealing with the IGRM, it is assumed that there is no
correlation among the explanatory variables [12-32]. In practice, however, this assumption often not holds,
which leads to the problem of multicollinearity. In the presence of multicollinearity, when estimating the
regression coefficients for IGRM using the maximum likelihood (ML) method, the estimated coefficients
are usually become unstable with a high variance, and therefore low statistical significance [33]. Numerous
remedial methods have been proposed to overcome the problem of multicollinearity [34-38]. The ridge
regression method [39] has been consistently demonstrated to be an attractive and alternative to the ML
estimation method.

Ridge regression is a biased method that shrinks all regression coefficients toward zero to reduce the large

variance [40]. This done by adding a positive amount to the diagonal of X" X. As a result, the ridge
estimator is biased but it guaranties a smaller mean squared error than the ML estimator.
In linear regression, the ridge estimator is defined as

Brige = (X' X+k D)Xy, )
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where Y is an N x1 vector of observations of the response variable, X =(Xy,...,X,) is an Nxp
known design matrix of explanatory variables, B = (4,..., ,Bp) isa P x1 vector of unknown regression
coefficients, | is the identity matrix with dimension px P, and k >0 represents the ridge parameter
(shrinkage parameter). The ridge parameter, K , controls the shrinkage of B toward zero. The OLS
estimator can be considered as a special estimator from Eq. (1) with k =0. For larger value of K , the
ﬁRidge estimator yields greater shrinkage approaching zero [39, 41].

1. Inverse Gaussian regression model

The inverse Gaussian distribution is a continuous distribution with two positive parameters: location
parameter, £ , and scale parameter, 7 , denoted as 1G (x, 7) . Its probability density function is defined as

2

1 1(y-—u

f(y,ur)=———exp ——( j , y>0. )
27y 3r 2y ,U\/;

The mean and variance of this distribution are, respectively, E (y )=z and var(y)=17:".

Inverse Gaussian regression model is considered a member of the generalized linear models (GLM) family,
extending the ideas of linear regression to the situation where the response variable is following the inverse
Gaussian distribution. Following the GLM methodology, Eqg. (1) can re-write in terms of exponential
family function as

f (y,y,r)zl{_%ﬁ+%}+{—%ln(2ny 3)—%In(r)}, ©)

T

where C (y,7) =—(1/ 2)In27y ®) - (1/2) In(z) and W‘Tf"(e):l{—ii}. Here, 7
T

represents the dispersion parameter and 1/ ,L12 represents the canonical link function.
In GLM, a monotonic and differentiable link function connects the mean of the response variable with the

linear predictor 77; :XT B, where X; is the i" row of X and B is a (P +1)x1 vector of unknown

regression coefficients. Because 77; depends on B and the mean of the response variable is a function of

7, then E(Y;) =44 :gfl(ni):gfl(XT B) . Related to the IGR, the /,lzll'\/)(-:-ﬁ . Another

possible link function for the IGRM is log link function, = exp(xT B).

The model estimation of the IGRM is based on the maximum likelihood method (ML). The log likelihood
function of the IGRM under the canonical link function is defined as

®) =2H%"— X?B}%—I%T—ln(%yf)} @

The ML estimator is then obtained by computing the first derivative of the Eq. (3) and setting it equal to
zero, as

x. =0. (5)

o) 1), 1
op _ézr Vi X B
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Unfortunately, the first derivative cannot be solved analytically because Eg. (4) is nonlinear in . The

iteratively weighted least squares (IWLS) algorithm or Fisher-scoring algorithm can be used to obtain the
ML estimators of the IGRM parameters. In each iteration, the parameters are updated by

BT =B+ 17 () (B, ©

where S(B") and 1 *(B"”) are S(B)=0C(B)/OP and 1 *(P) =(—E (82L’([5)/8|38[3T ))71
evaluated at B(r) , respectively. The final step of the estimated coefficients is defined as
Bicry =B X" W, @)

where B =(X"WX) | W =diag(/#) , m is a vector where i" element equals to

M. =@/ )+ ((y; — i) %), and f2 =1/«[XT B . The covariance matrix of ﬁ,GRM equals

) 1
COV(ﬁIGRM )= {_E (8 “p) H =7B7, (8)

BB’

and the MSE equals
MSE (BIGRM ) =E (BIGRM —B)T (BIGRM —B)
=7tr[B™] )

P, 1
.y L
=4

where /11- is the eigenvalue of the B matrix and the dispersion parameter, 7 , is estimated by [42]

A 1 - (Y — 4 )2
T= — . (10)
(n —p)g i

2. Ridge estimator

In the presence of multicollinearity, the matrix X" WX becomes ill-conditioned leading to high
variance and instability of the ML estimator of the IGRM parameters. As a remedy, Mansson and Shukur
[43] proposed the IGR ridge estimator (IGRR) as

ﬁIGRR = (XT WX + kI)fle WXBIGRM

< . (11)
= (X" WX +kD X WY,

where K >0. The ML estimator can be considered as a special estimator from Eq. (11) with k =0.

Regardless of K value, the MSE of the ﬁ,GRR is smaller than that of ﬁIGRM because the MSE of ﬁ,GRR
is equal to [33]
- SR sl
MSE(Bicrr) =72, 77— +kK (12)
2 2!
(4 +k) (4 +k)

where &; is defined as the j" element of 7ﬁ,GRM and y is the eigenvector of the X' WX matrix.

Comparing with the MSE of Eq. (9), I\/ISE(ﬁ,GRR ) is always small for k >0.
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3. Liuestimator
Another popular biased estimator which is known as Liu estimator has been adopted in Poisson regression
model. The inverse Gaussian Liu estimator (IGLE) is defined as

BIGLE = (XT VAVXJFI)_l(XT WX +d I)ﬁIGRM ) (13)

where 0 <d <1. Regardless of d value, the MSE of the ﬁlGLE is smaller than that of ﬁIGRM because
the MSE of ﬁ,GLE is equal to [33]

MSE(ﬁ.GLE)ﬂi Ui+ —1)2iL

R EE— . 14
T4 (4 +1)? = (4 +1)? =

4.  Liu-type estimator
Alternative to Liu estimator, the Liu-type estimator was proposed by Liu [44] to overcome the problem of
severe multicollinearity. The inverse Gaussian Liu-type estimator (IGLT) is defined as

ﬁIGLT = (X' WX+k D)X WX—d I)ﬁIGRM , (15)

where —oo<d <oo and kK >0. In Eq. (15), the parameter K can be used totally to control the

conditioning of X" WX +Kk I. After the reduction of X' WX +K | is reach a desirable level, then the

expected bias that is generated can be corrected with the so-called bias correction parameter, d [45-49].
Liu [44] proved that, in terms of MSE, the Liu-type estimator has superior properties over ridge estimator.

The MSE of ﬁ,GLT is defined as

. P (4 —d)?
MSE(BIGLT):TZ ( J )

@y @)
— 4 d+ —
T2 (4 +k)? (4 +k)?

5.  Two-parameter estimator
Following Asar and Geng [50] and Huang and Yang [51] the two-parameter estimator in linear regression
model is defined as:

Broe = (X' X+k D)X X+kd Do, n

where 0<d <1 and k >0. For IGRM, the two-parameter estimator (IGTP) is defined as:
Biorr = (X" WX+k I) (X" WX +k d I)f,cry - (18)

It is obviously noted that the ﬁIGTP is a combination of two different estimators IGRR and IGLE.
Furthermore, if K =1, Eq. (18) will be the g ¢ while if k =0, Eq. (18) will be the gy - Besides,

when d =0, then Eq. (18) will equal ﬁ,GRR .
In terms of MSE, the two-parameter estimator has superior properties over ML estimator. The MSE of
ﬁ,GTP is defined as

. 1l (A +kd)? a?
MSEB,sp) =7 | ——— 2 +k2(d 1> —1 |, (19)
eTP ,Zl 2 (45 +k)? (2; +k)?

6. Real application
To demonstrate the usefulness of the shrinkage estimators in real application, we present here a chemistry

dataset with (n, p) = (65,15), where N represents the number of imidazo[4,5-b] pyridine
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derivatives, which are used as anticancer compounds. While P denotes the number of molecular

descriptors, which are treated as explanatory variables [52]. The response of interest is the biological
activities (ICsp). Quantitative structure-activity relationship (QSAR) study has become a great deal of
importance in chemometrics. The principle of QSAR is to model several biological activities over a
collection of chemical compounds in terms of their structural properties [53]. Consequently, using of
regression model is one of the most important tools for constructing the QSAR model.

First, to check whether the response variable belongs to the inverse Gaussian distribution, a Chi-square test
is used. The result of the test equals to 5.2762 with p-value equals to 0.2601. It is indicated form this result
that the inverse Gaussian distribution fits very well to this response variable. That is, the following model
is set

15
Yicy, =eXPQ_X;5;). (20)
j=1

Second, to check whether there is a relationship among the explanatory variables or not, Figure 1 displays
the correlation matrix among the 15 explanatory variables. It is obviously seen that there are correlations
greater than 0.90 among MW, SpMaxA_D, and ATS8v (1 =0.96), between SpMax3_Bh(s) and ATS8v (
r =0.92), and between Mor21v with Mor21e (r = 0.93).

Third, to test the existence of multicollinearity after fitting the inverse Gaussian regression model using log

link function and the estimated dispersion parameter is 0.00103, the eigenvalues of the matrix X" WX
are obtained as 1.884x10°, 3.445x10°, 2.163x10°, 2.388x10*, 1.290x10%, 9.120x10%,
4.431x10%, 1.839x10%, 1.056x10°, 5525, 3231, 2631, 1654, 1008, and 1.115. The
determined condition number CN = /4, / A, of the data is 40383.035 indicating that the severe

multicollinearity issue is exist.

The estimated inverse Gaussian regression coefficients and the estimated theoretical MSE values for the
MLE, and the used estimators are listed in Table 1”. According to Table 1, it is clearly seen that the IGTP
has MSE values less than the MSE of the IGRM, in general. Moreover, the MSE of the IGTP estimator is
the lowest among all estimators. Specifically, it can be seen that the MSE of IGTP estimator was about
44.24%, 39.17%, 32.62%, and 12.11% lower than that of IGRM IGRR, IGLE, and IGLT, respectively.
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Figure 1. Correlation matrix among the 15 explanatory variables of the real data.

Table 1: The estimated coefficients and MSE values of the used estimators

Methods
B IGRM IGRR IGLE IGLT IGTP
MW 1.002 0.744 0.835 0.731 0.841
IC3 1.237 0.977 1.087 0.969 2.005
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SpMaxA_  -1.102 -1.363  -1.269  -0.905 -1.304
D
ATS8v -1.379 -1.67 -1.846  -1.126 -1.101

MATS7v ~ -1.219 -1.48 -1.386  -1.019 -1421
MATS2s -1.215 -1476  -1.382 -1.015 -1.417
GATS4p -1.237 -1.498  -2405 -1.037 -1.439
SpMax8_  2.506 2.145 2.309 2.707 2.304

Bh.p.

SpMax3_  2.069 1.808 1.902 2.269 1.867

Bh.s.

P VSA e 2001 1.739 1.833 2.2 1.798
3

TDBOSM  -2.103 -2.365  -2.27 -1.903  -2.305
RDF100m 1.571 1.309 1.403 1.77 1.368
Mor21v -2.434 -2.695 -2601 -2235 -2.636

Mor21le -2.352 -2.613  -2519  -2.152  -2.554
HATS6v 2.211 1.95 2.044 2411 2.009
MSE 3.295 2.258 1.823 1.658 1.215

Conclusions

In this paper, we presented a thorough review of literature regarding the biased estimators in inverse
Gaussian regression model when the multicollinearity is existing. According to real data application, the
two-parameter estimator has better performance than IGRM, IGRR, IGLE, and IGLT, in terms of MSE. In
conclusion, the use of the two-parameter estimator is recommended when multicollinearity is present in the
inverse Gaussians regression model.
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