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 The presence of the high correlation among predictors in regression modeling has 

undesirable effects on the regression estimating. There are several available biased 

methods to overcome this issue. The inverse Gaussian regression model (IGRM) is a 

special model from the generalized linear models. The IGRM is a well-known model in 

research application when the response variable under the study is skewed data. Numerous 

biased estimators for overcoming the multicollinearity in IGRM have been proposed in the 

literature using different theories. An overview of recent biased methods for IGRM is 

provided. A comparison among these biased estimators allows us to gain an insight into 

their performance.  
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1. Introduction 

The inverse Gaussian regression model (IGRM) has been widely used in industrial engineering, life testing, 

reliability, marketing, and social sciences [1-7]. “Specifically, IGRM is used when the response variable 

under the study is positively skewed [8-10]. When the response variable is extremely skewness, the IGRM 

is preferable than gamma regression model [11]. In dealing with the IGRM, it is assumed that there is no 

correlation among the explanatory variables [12-32]. In practice, however, this assumption often not holds, 

which leads to the problem of multicollinearity. In the presence of multicollinearity, when estimating the 

regression coefficients for IGRM using the maximum likelihood (ML) method, the estimated coefficients 

are usually become unstable with a high variance, and therefore low statistical significance [33]. Numerous 

remedial methods have been proposed to overcome the problem of multicollinearity [34-38]. The ridge 

regression method [39] has been consistently demonstrated to be an attractive and alternative to the ML 

estimation method. 

Ridge regression is a biased method that shrinks all regression coefficients toward zero to reduce the large 

variance [40]. This done by adding a positive amount to the diagonal of 
T

X X . As a result, the ridge 

estimator is biased but it guaranties a smaller mean squared error than the ML estimator.   

In linear regression, the ridge estimator is defined as 

 
1ˆ ( ) ,T T

Ridge k  β X X I X y   (1) 
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where y  is an 1n   vector of observations of the response variable, 1( ,..., )pX x x  is an n p  

known design matrix of explanatory variables, 1( ,..., )p β  is a 1p   vector of unknown regression 

coefficients, I  is the identity matrix with dimension p p , and 0k   represents the ridge parameter 

(shrinkage parameter). The ridge parameter, k , controls the shrinkage of β  toward zero. The OLS 

estimator can be considered as a special estimator from Eq. (1) with 0k  . For larger value of k , the 

ˆ
Ridgeβ  estimator yields greater shrinkage approaching zero [39, 41].  

1. Inverse Gaussian regression model 

The inverse Gaussian distribution is a continuous distribution with two positive parameters: location 

parameter,  , and scale parameter,  , denoted as ( , )IG   . Its probability density function is defined as 
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The mean and variance of this distribution are, respectively, ( )E y   and 
3var( )y  . 

Inverse Gaussian regression model is considered a member of the generalized linear models (GLM) family, 

extending the ideas of linear regression to the situation where the response variable is following the inverse 

Gaussian distribution. Following the GLM methodology, Eq. (1) can re-write in terms of exponential 

family function as 
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. Here,   

represents the dispersion parameter and 
21/   represents the canonical link function. 

 In GLM, a monotonic and differentiable link function connects the mean of the response variable with the 

linear predictor 
T

i i  x β , where ix  is the i
th

 row of X  and β  is a ( 1) 1p    vector of unknown 

regression coefficients. Because i depends on β  and the mean of the response variable is a function of 

i , then 
1 1( ) ( ) ( )T

i i i iE y g g     x β . Related to the IGR, the 1/ T
i  x β . Another 

possible link function for the IGRM is log link function,  exp( )T
i  x β .  

The model estimation of the IGRM is based on the maximum likelihood method (ML). The log likelihood 

function of the IGRM under the canonical link function is defined as 
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The ML estimator is then obtained by computing the first derivative of the Eq. (3) and setting it equal to 

zero, as 
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Unfortunately, the first derivative cannot be solved analytically because Eq. (4) is nonlinear in β . The 

iteratively weighted least squares (IWLS) algorithm or Fisher-scoring algorithm can be used to obtain the 

ML estimators of the IGRM parameters. In each iteration, the parameters are updated by 

 
( 1) ( ) 1 ( ) ( )( ) ( ),r r r rI S  β β β β   (6) 

where 
( )( )rS β  and 

1 ( )( )rI 
β  are ( ) ( ) /S   β β β  and   

1
1 2( ) ( ) / TI E


     β β β β

evaluated at 
( )r
β , respectively. The final step of the estimated coefficients is defined as  

 
1ˆ ˆ ˆ ,T

IGRM
β B X Wm   (7) 

where ˆ( )TB X WX , 
3ˆ ˆdiag( )iW , m̂  is a vector where i

th
 element equals to 

2 3ˆ ˆ ˆ ˆ(1/ ) (( ) / )i i i i im y     , and ˆˆ 1/ T
i  x β . The covariance matrix of ˆ

IGRMβ  equals  
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and the MSE equals  
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where j  is the eigenvalue of the B  matrix and the dispersion parameter,  , is estimated by [42]  
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2. Ridge estimator 

In the presence of multicollinearity, the matrix ˆT
X WX  becomes ill-conditioned leading to high 

variance and instability of the ML estimator of the IGRM parameters. As a remedy, Månsson and Shukur 

[43] proposed the IGR ridge estimator (IGRR) as 
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where 0k  . The ML estimator can be considered as a special estimator from Eq. (11) with 0k  . 

Regardless of k value, the MSE of the ˆ
IGRRβ is smaller than that of ˆ

IGRMβ because the MSE of  ˆ
IGRRβ

is equal to [33] 
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 where j  is defined as the j
th 

element of ˆ
IGRM β and   is the eigenvector of the ˆT

X WX  matrix. 

Comparing with the MSE of Eq. (9), ˆMSE( )IGRRβ  is always small for 0k  . 
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3. Liu estimator 

Another popular biased estimator which is known as Liu estimator has been adopted in Poisson regression 

model. The inverse Gaussian Liu estimator (IGLE) is defined as  

 
1ˆ ˆˆ ˆ( ) ( ) ,I

T
L

T
GG E I RMd  β X WX I X WX I β   (13) 

where 0 1d  .  Regardless of d value, the MSE of the ˆ
IGLEβ is smaller than that of ˆ

IGRMβ because 

the MSE of  ˆ
IGLEβ is equal to [33] 
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4. Liu-type estimator 

Alternative to Liu estimator, the Liu-type estimator was proposed by Liu [44] to overcome the problem of 

severe multicollinearity. The inverse Gaussian Liu-type estimator (IGLT) is defined as  

 
1ˆ ˆˆ ˆ( ) ( ) ,I

T
GGLT

T
I RMk d  β X WX I X WX I β   (15) 

where d   and 0k  .  In Eq. (15), the parameter k can be used totally to control the 

conditioning of ˆT kX WX I . After the reduction of ˆT kX WX I  is reach a desirable level, then the 

expected bias that is generated can be corrected with the so-called bias correction parameter, d  [45-49].  

Liu [44] proved that, in terms of MSE, the Liu-type estimator has superior properties over ridge estimator. 

The MSE of  ˆ
IGLTβ  is defined as  
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5. Two-parameter estimator 

Following Asar and Genç [50] and Huang and Yang [51] the two-parameter estimator in linear regression 

model is defined as: 

 
1ˆ ˆ( ) ( ) ,T T

TPE OLSk k d  β X X I X X I β   (17) 

where 0 1d   and 0k  .  For IGRM, the two-parameter estimator (IGTP) is defined as: 

 
1ˆ ˆˆ ˆ( ) ( ) .I

T
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T
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It is obviously noted that the ˆ
IGTPβ  is a combination of two different estimators IGRR and IGLE. 

Furthermore, if 1k  , Eq. (18) will be the ˆ
IGLEβ  while if 0k  , Eq. (18) will be the ˆ

IGRMβ . Besides, 

when 0d  , then Eq. (18) will equal ˆ
IGRRβ .  

In terms of MSE, the two-parameter estimator has superior properties over ML estimator. The MSE of  

ˆ
IGTPβ  is defined as  
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6. Real application 

To demonstrate the usefulness of the shrinkage estimators in real application, we present here a chemistry 

dataset with    ,    65,15n p  , where n  represents the number of imidazo[4,5-b] pyridine 
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derivatives, which are used as anticancer compounds. While p  denotes the number of molecular 

descriptors, which are treated as explanatory variables [52]. The response of interest is the biological 

activities (IC50). Quantitative structure-activity relationship (QSAR) study has become a great deal of 

importance in chemometrics. The principle of QSAR is to model several biological activities over a 

collection of chemical compounds in terms of their structural properties [53]. Consequently, using of 

regression model is one of the most important tools for constructing the QSAR model.  

First, to check whether the response variable belongs to the inverse Gaussian distribution, a Chi-square test 

is used. The result of the test equals to 5.2762 with p-value equals to 0.2601. It is indicated form this result 

that the inverse Gaussian distribution fits very well to this response variable. That is, the following model 

is set 

 
50

15

1

ˆˆ exp( ).IC j j

j

y 


 x   (20) 

Second, to check whether there is a relationship among the explanatory variables or not, Figure 1 displays 

the correlation matrix among the 15 explanatory variables. It is obviously seen that there are correlations 

greater than 0.90 among MW, SpMaxA_D, and ATS8v ( 0.96r  ), between SpMax3_Bh(s) and ATS8v (

0.92r  ), and between Mor21v with Mor21e ( 0.93r  ). 

Third, to test the existence of multicollinearity after fitting the inverse Gaussian regression model using log 

link function and the estimated dispersion parameter is 0.00103, the eigenvalues of the matrix ˆT
X WX  

are obtained as 
91.884 10 ,

63.445 10 , 
52.163 10 , 

42.388 10 , 
31.290 10 , 

29.120 10 ,
24.431 10 , 

21.839 10 , 
21.056 10 , 5525 , 3231 , 2631 , 1654 , 1008 , and 1.115 . The 

determined condition number max minCN /   of the data is 40383.035 indicating that the severe 

multicollinearity issue is exist. 

The estimated inverse Gaussian regression coefficients and the estimated theoretical MSE values for the 

MLE, and the used estimators are listed in Table 1”. According to Table 1, it is clearly seen that the IGTP 

has MSE values less than the MSE of the IGRM, in general. Moreover, the MSE of the IGTP estimator is 

the lowest among all estimators. Specifically, it can be seen that the MSE of IGTP estimator was about 

44.24%, 39.17%, 32.62%, and 12.11% lower than that of IGRM, IGRR, IGLE, and IGLT, respectively.  

 
Figure 1. Correlation matrix among the 15 explanatory variables of the real data. 

 

Table 1: The estimated coefficients and MSE values of the used estimators 

 Methods     

̂   
IGRM IGRR IGLE IGLT IGTP 

MW 1.002 0.744 0.835 0.731 0.841 

IC3 1.237 0.977 1.087 0.969 2.005 
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SpMaxA_

D 

-1.102 -1.363 -1.269 -0.905 -1.304 

ATS8v -1.379 -1.67 -1.846 -1.126 -1.101 

MATS7v -1.219 -1.48 -1.386 -1.019 -1.421 

MATS2s -1.215 -1.476 -1.382 -1.015 -1.417 

GATS4p -1.237 -1.498 -2.405 -1.037 -1.439 

SpMax8_

Bh.p. 

2.506 2.145 2.309 2.707 2.304 

SpMax3_

Bh.s. 

2.069 1.808 1.902 2.269 1.867 

P_VSA_e

_3 

2.001 1.739 1.833 2.2 1.798 

TDB08m -2.103 -2.365 -2.27 -1.903 -2.305 

RDF100m 1.571 1.309 1.403 1.77 1.368 

Mor21v -2.434 -2.695 -2.601 -2.235 -2.636 

Mor21e -2.352 -2.613 -2.519 -2.152 -2.554 

HATS6v 2.211 1.95 2.044 2.411 2.009 

MSE 3.295 2.258 1.823 1.658 1.215 

7. Conclusions 

In this paper, we presented a thorough review of literature regarding the biased estimators in inverse 

Gaussian regression model when the multicollinearity is existing. According to real data application, the 

two-parameter estimator has better performance than IGRM, IGRR, IGLE, and IGLT, in terms of MSE. In 

conclusion, the use of the two-parameter estimator is recommended when multicollinearity is present in the 

inverse Gaussians regression model. 
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 المعكهس: مخاجعة المهضهع مقجرات التقميص في نمهذج الانحجار الكاوسي 
 عثمان و  رفل اديب فخح عبج الغني يهنذ  

 قدم الاحراء والمعمهماتية ،كمية عمهم الحاسهب والخياضيات، جامعة المهصل، المهصل ، العخاق.
 الخلاصة

الانحجار لو تأثيخات غيخ مخغهب فييا عمى تقجيخ الانحجار. ىناك العجيج من الطخق  ن وجهد علاقة ارتباط عالية بين المتنبئين في نمحجة

( ىه نمهذج خاص من النماذج الخطية المعممة. يعج IGRMالمتحيدة المتاحة لمتغمب عمى ىحه المذكمة. نمهذج الانحجار الغاوسي العكدي )

IGRM تجابة تحت الجراسة عبارة عن بيانات منحخفة. تم اقتخاح العجيج من نمهذجًا معخوفًا في تطبيق البحث عنجما يكهن متغيخ الاس

في الأدبيات باستخجام نظخيات مختمفة. يتم تقجيم لمحة عامة عن  IGRMالمقجرات المتحيدة لمتغمب عمى العلاقة الخطية المتعجدة في 

 حيدة بالحرهل عمى نظخة ثاقبة لأدائيا.. تدمح لنا المقارنة بين ىحه المقجرات المتIGRMالأساليب المتحيدة الحجيثة لـ 
 متعجد الخطية. مقجر متحيد نمهذج الانحجار الغاوسي المعكهس ؛ محاكاة مهنت كارله الكممات الجالة:


