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1. Introduction

Scheduling (sequencing) in the theoretical and practical is an important area of operational research. Since
most of the scheduling problems have large sizes, it is necessary to find a desirable algorithm for these
problems (Werner et al., 2018). Many researchers considered single objective function, where in the
practical the decision maker has to choose only a single objective from many objectives (T'kindt and
Billaut, 2002). Recently, multi-criteria scheduling problems have increased. In general, two structures are
existed hierarchical minimization and the simultaneous minimization (Hoogeveen, 1992). In the
hierarchical the objectives are not in same important, where in the simultaneous the objectives have the
same important.

In this paper, scheduling n jobs on single machine are considered without interruption. Each job has
positive processing time and due-date. The objective function to be is the sum of maximum earliness and
maximum tardiness which first is introduced by Amin-Nayeri and Moslehi (Nayeri and Moslehi, 2000).
The two criteria were considered by many authors; here we introduce some recent works that related to
them. Each criterion has been studied in different environments individually or composite by many authors.
(Jawad et al., 2020) introduced some heuristic approaches to the total completion time and the total
earliness. Also, (Ali and Jawad, 2020) used local search methods for the total completion time and the total
earliness. (Cheachan and Kadhim, 2021) applied a branch and bound technique to the problem of the total
completion time and the maximum earliness where the due dates are triangular fuzzy numbers. (Baker,
2014) addressed the stochastic scheduling problem to minimize total expected earliness and tardiness costs.
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(Chachan and Hameed, 2019) used branch and bound method to solve four criteria, completion time, the
tardiness, the earliness, and the late work. With unequal release date (Aneed, 2013) found the optimal
solution by branch and bound method of the sum of completion times, maximum earliness and maximum
tardiness.

Here, a new algorithm was presented to minimize the sum of maximum earliness and maximum
tardiness1/ / ( Epax + Tmax )- A new algorithm is presented which depends on an optimal solution of some
related problems as shown in Figure (1). First we solved problem (1) and showed that this solution was the
first efficient solution for the problem (3). Also by solving problem (2) we obtained the last efficient
solution for the problem (3). The next step was finding all the efficient solutions for problem (3), and then
found the sum of each efficient solution obtained the optimal solution of problem (4).

2. Notations and Definitions

In this section the following notations are used

N = the set {1, 2, 3,..., n}.

IT = the set of permutation schedules.

7 = a permutation schedule.

p; = processing time for job j.

d; = due date for job j.

C; = completion time for job j.

E; = Max {d;—C;, 0}, the earliness of job j.

Emax = Max {E;}; the maximum earliness.

T;i = Max {C; — dj, 0}; the tardiness of job j.

Tmax = Max {T;}; the maximum tardiness.

MST: (minimum slack times) jobs are sequenced in non-decreasing order of minimum slack times s;, where
si=di - p;.

SJPT:J(sth)rtest processing time) they are in non-decreasing order of p;.

EDD- rule: (Early due date) they are sequenced in non-decreasing order of d;.

Definition (1) (Jouni, 2000): Consider a problem P , a schedule neIT (where IT is the set of all schedules) is
said to be feasible, if it satisfies the constraints of P.

Definition (2) (Aneed, 2013): A feasible schedule ©* is efficient, with respect to the criteria ( f and g ) if
there is no any feasible schedule 1 such that f(m)< f(m*) and g(m)< g(m*), and at least one of the
inequalities is strict.

3. Mathematical Formulations

Here, some problems are considered which constructed by two objectives as shown in the Figure (1).

Emax

1 s.t. ~_
Emax
T = Y 7| EptT
7 and max max

2 /

s.t.

Emax Tmax

Figure (1): Sub-problems

The problem can be stated as: n jobs are available for processing at time 0, and their parameters are known
in advance. The key parameters in the model include the processing time for job j (p;) and the due date (d;).
In the actual schedule, job j completes at time C; ( Baker, 2014). The two objectives under consideration are
the maximum tardiness and maximum earliness. For a sequence m of the jobs, earliness E,g, and the
tardiness T are given by:

Crw= Pr),

Cn(j): CT[(j-l)+ Py, j: 2,3,..,n,
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En(j): maX{dn(j)' Cn(j)l 0}, J= l, 2, . N
Tn(j): maX{Cn(j)- dn(j), 0}, j: 1,2,..,n
So the mathematical form of this problem can be formulated as:
N
Z = min{E a5 (1) + Tiax (M)}
s.t
ET[(]) = 0, ] = 1, 2,...,n.
T.,-[(j) = 0, ] = 1,2, e, I >— (P)
ET[(]) > d.r[(]) - Cﬂ(j), ] = 1, 2, e, I
T.,-[(j) = Cn(]’) - dn(j)l ] = 1, 2, ey I
_—

4. Combine Conflicting Criteria

To solve problem (P), two structures are available to combine conflicting criteria, namely hierarchical and
simultaneous (Hoogeveen, 1992). For the hierarchical case, the criteria are ranked according to their
importance, where for the simultaneous case the criteria have the same importance (Hoogeveen and Velde,
1996).

4.1. Problems (1) and (2)

The problem (1) and (2) can be written as:

1/ 1 Lex (Tmax, Emax) and 1/ / Lex (Emax, Tmax) respectively and they are not solved yet. The optimal
schedules of Ep.x and Tyax are given by MST-rule and EDD-rule respectively (Abdul-Razag and
Mohammed, 2016), but there are no any direct method to solve the composition of them. So, we will
present two new algorithms.

An Algorithm (1)

Algorithm (1) for problem (1) is a modification of Smith’s algorithm (Smith, 1956), and Lawler’s
algorithm (Lawler, 1973).

Step (1): Set R=>p;, N={1,2,..,n}, k=n, j=1,2,...,n

Step (2): Find a job j* such that R- dj» < Trax (EDD). If there exist a tie, order these jobs by MST
rule. Assign job j* in position k .

Step (3): SetR =R -p;, N =N - {j*}, k=k-1. Ifk =0, stop. Else, go to step (2).

Proposition (1): Algorithm (1) gives optimal schedule for problem (1).

Proof: The job j* in step (2) of algorithm (1) satisfies the condition Tj < Tra« (EDD). Also, if there exists
a tie, then choose the job j* with largest s;~. Hence the constructed schedule gives optimal for problem
(1).m

An Algorithm (2)

Algorithm (2) for problem (2) is a modification of the algorithm of Hoogeveen and Van de Velde
(Hoogeveen and Velde, 1990).

Step (1): Find Ejgx (MST) = E*.

Step (2): k=1, r; = max {s-E*, 0} Vje N, 6 = (¢), o be the schedule jobs.

Step (3): Find a job j*eN with minimum r; such that r;* < Cy, (if a tie exists, choose the

job j* with smallest dj«.

Step (4): N=N-{j*}, o = (0, 6 (k). If N= ¢ go to step (5), Else k=k+1, go to step (3).

Step (5): stop.

Proposition (2): Algorithm (2) gives optimal schedule for problem (2).

Proof: The job j* in step (3) of algorithm (2) satisfies the condition Ej» < Eqmax (MST). Also, if there exists a
tie, then choose the job j* with smallest dj~. Hence the constructed schedule gives optimal for problem
(2).m
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4.2. Problems (3)

This problem is a simultaneous case, and it can be written as follows: 1/ / F (Emax, Tmax)

i.e., minimize a function F of two criteria with the same important. So, the optimal solution doesn’t make
sense, because there exists no such solution that minimizes both criteria simultaneously. Here, we will
present a new algorithm to find all the efficient solutions. MST-rule doesn’t give efficient solution for the
problem (3) (Kawi and Abdul-Razag, 2017) because there exists me IT such that E . () = Enax (MST) and
Tmax () < Trmax (MST) as illustrate in the following example

Example (1): Consider 4- jobs problem

i 1 2 3 4
P 1 5 12 19
ds 18 21 25 30

MST- sequence (4, 1, 2, 3) gives Ema = 11, Trax = 12, where the sequence (4, 3, 2, 1) gives Enax = 11, Trmax
= 19. Therefore, the sequence (4, 3, 2, 1) dominates the sequence is (4, 1, 2, 3). To find such = (say ©'), it is
exactly the optimal solution of problem (2).

Proposition (3): 7 is the first efficient solution of problem (3).
Proof: Since Emay (1) = Emax (MST) from algorithm (2), and if a tie exist during the algorithm, choose the
job j* with smallest d;. So = is efficient solution for problem (3).

An Algorithm (3)
This algorithm finds all the efficient solutions of the problem (3) which depends on the known algorithm
(Van Wassenhove and Gelders, 1980).

Step (1): Find = € 1 by using algorithm (2). = is the first efficient solution of problem (3),

A = Ty (m)-1.

Step (2): SetR=2p;, N={1,2,..,n}, k=n, j=1,2,..,n.

Step (3): Find a job j* such that R- dj«< A. If there exist a tie, order these jobs by MST rule. Assign
job j* in position k.

Step (4): SetR=R - pjx, N=N - {j*}, k=k-1. Ifk =0, 7 is a solution, go to step (5).

Else, go to step (3).

Step (5): A = Trax ()1, go to step (2).

Note that the algorithm stops whenever T, reached T.x (EDD). This gives the following proposition.
Proposition (4): The solution of problem (1) is the last efficient solution of problem (3).

Proof: Let oe]] be the optimal solution of problem (1), i.e., Tyax (6) = Trax (EDD). To prove that o is
efficient for problem (3). For 6, Tmax (6) = Tmax (EDD) < Tmax (67) V o € [1. Also, gives minimum Epmax
(o).m

4.3. Optimal Schedule for Problem (4)

After characterized all the efficient solution for problem (3). Now it is clear that one of the sum of the
efficient solutions is optimal schedule for problem (4). To illustrate the algorithms consider again the
example (1)

j 1 2 3 4
p; 1 5 12 19
dj 18 21 25 30

Using algorithm (2) to solve problem (2), we have E. . (MST) = 11, and s;= 17, s, = 16, S3= 13, and s, =
11;r,=17,r,= 16, r;= 13, and r, = 11. Fromr;(j=1, 2, 3, 4), choose r, and assign it in position 1, then job 1,
2, 3. S0, get the schedule (4, 1, 2, 3) with Es= 11 and T = 12. This solution is the first efficient solution
for the problem (3). Using algorithm (1) to solve problem (1), we have R=> p;=37, N={1, 2, 3,4}, k=4, j
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=1, 2, 3,4, Tha (EDD) = 7. Find that job 4 satisfies the condition, so assign job 4 in position 4, R= 37- ps=
18. Continue to choose jobs 1, 2, 3. So the sequence (3, 2, 1, 4) is optimal with Eq= 13 and T = 7. It s
also the last efficient solution for problem (3).

To find the efficient solutions for the problem (3), use algorithm (3) stating with the schedule (4, 1, 2, 3)
with Ea= 11 and Tax = 12. A = 12-1=11. Job 4 satisfies the condition, R=37-19=18. Continue with
ordering the jobs according to MST-rule if there exist a tie. We get the schedule (3, 2, 1, 4) with Ej= 13
and Tmax = 7. Optimal solution for problem (4) is one of the efficient solutions namely (3, 2, 1, 4) with
value 20.

5. Computational Results

Here, the results are introduced via computational tests to show the ability of the proposed algorithm. The
problems were generated as follows: p; are generated from the uniform distribution [1,10]. Also, d; is
generated from the uniform distribution [0, ¥;_; p;]. The algorithm was coding by Matlab 8.1 (R2013a)
and implemented on Intel (R) Pentium (R) CPU 2117U@ 1.80 GHZ, with RAM 4.00 GB personal
computer.

6. Conclusion

In this paper, three algorithms were presented to find optimal schedule for the problem of minimizing the
sum of maximum earliness and maximum tardiness during solving some problems related to these
objectives Enax and Thax. This objective is an NP-hard and it is irregular, so some properties of regular
objective are missed. Therefore, we can conclude that this objective is difficult to solve, especially in the
case where the range between T.x (MST) and T...x (EDD) is large or between E.x (MST) and E,.x (EDD).
The proposed algorithms were easy to run and had a simple structure. To evaluate the ability of the
algorithm, it was tested on some examples with different n.
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