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Introduction

Latent variable models (LVMs) are a statistical method for modeling a series of correlated data in order to
assess the correlations between manifest and latent variables (Bollen and Paxton, 1998; Lee, 2007).

The Bayesian method starts by defining a prior distribution for the parameters that need to be estimated.
Without referencing the dataset used to estimate the model, the prior represents the researcher's knowledge
(Lee, 2007).

The rapid growth of LVMs is a result of the demand for complex models and the accompanying statistical
approaches for tackling difficult research problems in a range of fields. The Bayesian technique is built
using the Gibbs sampler algorithm (Geman and Geman, 1984), where latent variables in multiple
populations and concealed continuous normal measurements are regarded as hypothetical missing data.
Conjugate priors are employed for the structural parameters whereas non-informative priors are used for
the thresholds (cut points with equally and unequally spaced distances). The primary objective of this study
is to present a Bayesian approach for the analysis of two populations nonlinear LVMs with dichotomous
variables and covariates.

Many academics have suggested models in recent years that incorporate nonlinear relationships between
the manifest, and latent variables. Several of these publications were suggested by Lee and Song (2003),
Lee and Song (2005), Lee (2006), Lee and Tang, (2006(, Cai et al. (2008(, Lee et al. (2009), Lee et al.
(2010).

A specific methodology for using the Bayesian approach in factor analysis is provided by Song and Lee
(2002). They developed an analytical model that uses joint Bayesian estimations for the component scores
and structural parameters in relation to the established restrictions, enabling the simultaneous determination
of numerous findings. This system has been shown to be effective in producing calculations of these
estimations because it combines the Gibbs model and Metropolis-Hastings algorithm.

The maximum likelihood method was applied by Song and Lee (2006) to multi-sample nonlinear structural
equation models with missing continuous and dichotomous data.

A Bayesian nonlinear structural equation model was created by Song and Lee (2006) using linear fixed
covariate and latent variables in the measurement model and nonlinear fixed covariate and latent variables
in the structural model. Mixed continuous and dichotomous data are used in this study, and a concealed
continuous normal distribution (a truncated normal with unknown parameters) is presented to overcome the
dichotomous data problem. In order to solve the issue,

Lee (2007) used an underlying latent continuous normal distribution (a truncated normal distribution with
unknown parameters) in Bayesian multi-sample nonlinear structural equation models with dichotomous
variables. Additionally, the Gibbs sampling method was employed to estimate the parameter. The ordered
categorical variables were handled as a continuous normal distribution in Lu et al. (2012) Bayesian study of
multi-sample nonlinear structural equation models with application to behavioural finance. The multi-
sample analytic method is essential in many applications, such as cross-cultural research. Nonlinear effects,
such as quadratic and interaction effects between the covariates and latent variables, are frequently essential
for constructing the main theory.

The document has the following structure. The model is described in Section 2 of the document. The
Bayesian analysis is described in Section 3. The model comparison using DIC is described in Section 4. A
case study may be found in Section 5. Section 6 summarizes the results and the discussion, while Section 7
offers conclusions and recommendations.

2. Model Description

The suggested latent variable model for this case include both latent variables and linear covariates in the
measurement equation. The structural model also includes latent nonlinear variables and nonlinear
covariates. This LVM is taken into account.

(9) _ A(@)~(9) (9) .4(9) (9) i
=AY + A0 + g7, I =1..,n
)

(9)

where Y ;7' px1 is a manifest variable with dichotomous data that has been established as a random

vector, A(g)(p xml) is a vector of linear covariates, and Ci(g)(mlxl) is a vector of dichotomous
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covariates, since A(g)(p x() is a matrix with unknown parameters, it is frequently referred to as the
factor loading matrix. A random vector of latent variables is shown in a)i(g) g =1, while a random vector
of residuals is shown in £’ p x1.

This leads to the assumption that the outcome of Y i(g)’s is independent, and that a)i(g) is then distributed

(9)
independently as N [0,@®)]. Additionally, £© has an independent distribution as N [0, %, ], where
W, is a diagonal matrix with ¥/, ..., ¥, as its diagonal components.

Furthermore, it has been found that ei(g) and a)i(g) in this instance are both independent. A latent vector,

@, , is separated into (7 &), where vectors 7, (0, x1) and &, (q, x1) are both present, in order to
implement more complex mathematical situations.

The vectors of the exogenous latent variables are & (g, x1) and the endogenous latent variables are

7. (0, x1) , respectively.
The vector of dichotomous variables on 77, is used to estimate the probable significant causal impact of

X; (m, x1) . But if X; is non-normal, then & must likewise be non-normal.
The following latent variable model gives the definition of the structural equation:

7@ =BOp® + TOF (x© £9) i=1..n @
A matrix of unknown parameters is represented by B(g)(ql qu) , a vector-valued function with
differentiable functions is represented by F (x(®,&@) = (f (x(@,&D),..., f, (X, &), and

an unknown parameter matrix is represented by fl, . r . and F(g)(qlxr) . For a simple
expression, (2) can be written as:

”i(g) = 799G (nl(g)’xi(g)’éi(g))+5i(g)

.
where 5i(g)(q1><1): o9 :(B(g),r(g)) ,and G (y i(g)’xi(g)";::i(g)) — (ni(g) 'F(Xi(g)"fi(g))T )T are error
measurement vectors.

It is necessary to first suppose that fi(g) is distributed as N [0, @], then that 5i(g) is distributed as

N [0,%;], and that ¥} is a representation of a diagonal matrix with the entries ¥/, ..., 5,, and for

which 8% and &) are independent of each other.

An illustration of two populations LVM defined in (2) that are connected to
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T T
n; 2(77i ) & :(giligiz) , and X; = (X;,;)
Dy @, pOv 00 , Oy O L Dy O @@, pOv O e® Q) | O £ 1) (L
ﬂl()x()—l_lgz()xi(l)gi(l)+ﬂ?f)xi(1)é:i(2)+:B§)Xi(1)§| é:()+ﬂ5( )Xi(l)é:i(l |(2)+71 )§(1)+ ”5“*‘

yOEOLD OO0 | 5O (3)

2)y, (2 2)y, (2) £(2 2)y, (2) £(2 2)y, (2) £(2) £(2 2)y (2) £(2) £(2 (2) £(2
=ﬂ1( I(l)+ (2) ()5()4_,33( ()f() ﬂi ()é:l( )5() ﬂs( ()é:( )é:l(z)_l_]/l )é(l)_w/2 ;
(2)5(2)5(2)_’_722)(;:(2)5(;) +5i(2) (4)
L L L 1 i 1 2 2 2 2 2 2 2
Here,F():([?l(), 2()1 g):ﬁi)nﬂé 1}/]_ 17/2 7/3())1}/4 )a (ﬂl 1ﬂ yﬁg(),ﬂi)aﬂg,(),71()17§),7§)174(1));

and F(X(g) g(g)) (X.(f),x(g)'f.(f),x(g)f(g),xi(lg)é(f)é(g) X(g)é‘(g)é‘( é:(g) 9zl(éq)’é:l(g)ezl(lg)’é:(g)ezl(g))

where g = 1; 2. Further, X; and £, are both quadratic terms of elements. As X, , may be drawn from the

arbitrary distributions for covariates that are dichotomous data.

Furthermore, let A, and A, to stand for the k" row for each Aand A .

So, let A, = (A] ALf)T to be a partition of A, which corresponds with & 2(77iT NfiT )", which is

kn?

also a partition. If follows that E (&) =0,and 77, =(1 —B)"TF(x,,&) , it follows from (1) that

e =AC; + AL E () =Ac +A, T - B)"'TIE (F(x;,&)) (5)

But when employed in a practical application scenario, F(X;,& ) is typically not complex, and as a
result, it can be anticipated that E (F (X, & )) will likewise be very straightforward, making it easy to

calculate g, .
It is also beneficial to investigate this indirect method for modeling covariates, similar to those illustrated

above, by first adding y; withX, , and then by managing each component of the latter as if it were an

exogenous latent variable that could be measured accurately using a single indicator.

At most basic level, a dichotomous variable zr(ng’ can be defined according to its underlying latent
continuous random variable y {9’ by:

a9 < Y| (9) < (9)

Zl(g) 1Z(g) 1294
z@—| | if : (6)
ZS(Q) a9 < (g)<a(9)
s,zs(g) s, zs(g)+1
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(9)

m,b,

(9)

m,b,

(9

) < o9
wl<ay, <.<aq

In order that {—c0 = ¢, <Oy = oo} the set of threshold values that define the
specified categories are also true, and the number of categories for the dichotomous variable z ,‘ng) is
represented by b, .

We will utilize hidden continuous normal distribution Q {2’ (a truncated normal distribution with known

parameters) to solve the issue of dichotomous data in covariates X @) Thus, it follows:

a(g) <Q1(g) Sa(g)

X9 140 1§90
X(g) = if (7
(9) (@) (@) (9)
< <
Xs as,xgw Qs as,xggm

However, it should be noted that the number of thresholds (cut points) for each group is equal for every
dichotomous variable. However, we employ both equally and unequally categorized distances as our
criteria.

3. The Bayesian Analysis

Let 89’ serve as an unknown parameter vector in the previously mentioned model, and let a‘®’ serve as
an unknown threshold vector for the dichotomous variables that belong to the g™ group.

This was chosen because a study of several populations typically identifies a certain type of parameter in

6% as an invariant within group models. The following limitations, for instance, apply to limits on cut

points:

The thresholds on the model are typically implemented as A” =...= A, @D =... =@ anq/or
r9=.=r¢, Consequently, we may accept some common parameters while evaluating the data,
oY =...=0(G)_ Allow @ to be a vector that contains all of the unknown separate parameters
'Y =...=r" andallow « to be a vector that contains all of the unknown thresholds.

The Gibbs sampler is used to create the Bayesian estimate of € and & .

Let the dichotomous data that were observed be Z @) = (z{9),...,z () and z =(z®,...,Z ©) . Let
9

Z@ and Z, be the latent continuous measurements in Y @ =(y@ ,y@) and

Y = @,...)Y @), respectively.

After that, add Y to the observed data in the posterior analysis. The problem will be easier to handle after Y
has been defined since all the data is taken into consideration and is deemed continuous. Furthermore,
assume that 29 = (a)l(g) yoeny m&gg)) and 2 = (02Y,...,02©) represent the latent variable matrix.
Significantly reduced complications occur from the nonlinear connections between the latent variables. As
a result, by enhancing the data, problems related to the model's more intricate components can be resolved.
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Through posterior analysis, (Y ,£2) may be added to (Z), which stands for the collection of observed
data.

We will also show how the joint posterior distribution [@,a,Y ,£2|Z ]looks. The Geman and Geman
(1984) Gibbs sampler may be used to generate a set of observations from the associated joint posterior
distribution.

As a consequence, using the created sample of data, a number of conventional inferences may be used to
determine the Bayesian answer. Additionally, we may build a collection of sample observations from these
conditional distributions [2|8,a.,Y ,Z], [a)Y |0,€2,Z] and[@|a,Y ,£2,Z Jusing the Gibbs sampler
and the iteration technique.

We may establish the non-informative prior to calculating ¢ in a method similar to how previous cut point
issues were solved, so that the corresponding prior distribution is comparable to the constant.

According to the different group models, the conditional distribution [@ |e,Y ,£2,Z ] can also be divided

into several parts that each comprise a variety of structural parameters.

Some examples of competing models are:

M, :Noconstraints M, =p® =..= g M, =AY =...= A%
— A _— A©) —Y = —p©
M,=A'=..=A4>" M, =@ =..=D

_w® _ _gw©) _w® _ _gw)
M, =Y = =FO M =P = =¥

As various theories are used or as competing approaches are explored, these components change. When
placed under the various definitions of My as described above, the components of the conditional

distribution, known as [@|a,Y ,€2,Z], and the condition applied to preceding distributions are

considerably different, or variable.

The basic assumption is that the previous distributions for the unconstrained parameters would behave
independently for each group. It is also necessary to determine the data that belongs in each group and to
supply an accurate value of the prior distribution when creating an estimate for the unconstrained
parameters in order for them to be fully implemented.

The Bayesian estimates and model comparison in the setting of two populations nonlinear LVMs with
dichotomous variables are covered in this section. To complete the plan, the idea of data augmentation is
merged with MCMC tools. Two populations nonlinear LVMs are theoretically a particular case of the two-
level SEM, and the output may be utilized to produce different conditional distributions that are required by
the Gibbs sampler.

Since there are clear restrictions on the parameters in different groups that must be satisfied, more attention
needs to be paid to identifying the similar previous distributions. To employ the route sampling method for

model comparison in two-level SEMs, similar information is required (Lee and Song, 2012).

62



Iragi Journal of Statistical Sciences, Vol. 20, No. 2, 2023 (57-81)

This section explains how to use the Bayesian technique to examine the prior nonlinear LVMs in the setting
of dichotomous variables. This method has various advantages for the whole application, including: (1)
When it is included directly, applying past information can improve the total analysis. Particularly, it
produces more precise parameter estimate. (2) Various scholars have shown that sampling-based Bayesian
approaches are independent of asymptotic theory. (Lee, 2006; Lee and Shi, 2000; Shi and Lee, 2000; Lee et
al., 2010; Lee et al., 2007; Lee and Song, 2002; Song et al., 2011; Yang and Dunson, 2010); (3) Both
Bayesian and ML estimates feature similar optimal asymptotic properties. Through the posterior analysis,

the observed data, as represented by [Z], is enhanced according to the latent data [Y, £2 ]. Allow
Z ={z,,...,z  }to represent the observed data set of Dichotomous variables and @ to act as the vector
having unknown parameters in order to construct the Bayesian method for the suggested LVMs.

By defining p (&) in such a way that @ is treated as random variable with a prior distribution and prior

probability density function, the Bayesian technique would be used to explain the situation. Thus, the

related assumptions can be based on the observed data for Z and p (&) . So, allow Let p(Z , @) represent
the joint probability density function of both p (@) with reference to different M.

Based on a well-known identity in probability, p(Z,8)=p(Z |@)p(8) , where p(Z |#) and
p (€| Z ) are conditional probability density functions. It follows that:

log p(@|Z)cclogp(Z [6)+1logp(9) (8)

The posterior density function of the unknown parameters is the name given to the function p(@|2).
The posterior density function p(@|Z ), or unknown parameters, is what results from this. Additionally,
the probability function p(Z | @) and the prior density function p (&) make use of sample data and
previous knowledge.

However, it should be emphasized that p(Z | @) depends on sample size, whereas (is not). Due to its
greater similarity to the likelihood function p(€|Z ), p (@) the posterior density function, is more
pertinent for situations involving large samples than p (@), which is less significant.

Therefore, keep in mind that p (@) is important for the Bayesian technique when the sample size is less or

when the data obtained from Z contains dichotomous information.

By treating yi as an unobserved variable in this situation, which corresponds to the manifest dichotomous
variables as they are found in zi, MCMC techniques are used.

The Bayesian estimate for @ and any standard error estimates may be obtained from the sample mean and

variance matrices, respectively, if we can extract a sufficient number of observations (represented by
{0V, 20)Y Ot =1,...T}) from the joint posterior distribution defined by p(8,£2.Y |Z),
which is then used to construct the joint posterior distribution.

0=T"Y 0", var(d|2)=(T-1)"> (8" -8)©@" 6. ©

t=1 t=1

63



Iragi Journal of Statistical Sciences, Vol. 20, No. 2, 2023 (57-81)

This means that even if establishing the conditional distribution, (@|£2 ,Y ,Z ) as explained in Step (1),

it is still required to expressly identify the previous distribution for the corresponding components in @ .
The conjugate prior distributions have typically shown to be flexible and appropriate for the task during
Bayesian analysis (Broemeling, 1985).

Many Bayesian analyses in structural equation models have used this form of prior distribution (see Lee
and Song, 2004; Song and Lee, 2007). Consequently, the popular conjugate prior distributions listed below

are employed:

P() ~Nlto.Ho, o PUA)~N o Ho PO 1va) ~N Poge Wi Hosc ]
P@)~W,[Ry, 2] Plyy) ~Cammala,, By ] (10)

Given the definition that p(-) is distributed according to, , , which is the k™ diagonal element of

Y{S,ﬂk' and lék' are the k" rows of A and A, respectively. HOy =diag (051,---,0§p), and

Hoy Ao s Ao s Qo s Bk Pos T v Hgr Hig s, and Ry, are assumed to be known, as prior information.

The dichotomous variables and covariates in this situation, however, can make the linked conditional
distributions too complicated to readily extract or simulate data from them.

This encourages the additional escalation of Y, x the latent matrices, in the posterior analysis, and motivates
attention to the joint posterior distribution [, 8, 2,Y ,X|Z ,Q] . To garner observations of this
posterior distribution, using the Gibbs sampler, it is essential to begin with the starting values

(a(o),ﬁ(o),[.) (0),Y (O),X(O)) . The following procedure is then implemented to simulate
(a(l),e(l),.Q @y (1),X(1)) and so on. More specifically at the m™ reiteration of the current values
a(m)’e(m)’g (m),Y (m),X(m) _

1. Generate Q™ from p@e" ™ @™y ™ x™ 7 Q)

(m+1)

2. Generate 6" from p(g|€2 a™y M xM™ 7 Q)

3. Generate (@™ Y ™ x™) from p(a.Y ,x |0, 2™ 7 Q) (11)

The cycle will only produce (@™ ,0™, Q2 (M y (M) x (M)

after the m" repeat, according to

the earlier definition.

Therefore, it can be demonstrated that the joint distribution of the value of
(a(m),e(m),ﬂ (m),Y (m),X(m)) moves in the direction of the joint posterior distribution
[,0,02)Y ,x |Z ,Q ] as m gets closer to infinity (see Geman and Geman, (1984)).

4. Model Comparison
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a measure of model comparability the Akaike Information Criterion (AIC; Akaike, (1973)) is an extension

of the DIC (see Spiegelhalter et al., 2002). The DIC is calculated using a competitive model M ¢ with a

vector of unknown parameters &, as follows:

DIC, =D(6,)+d,, (12)
where D (6, ) measures the goodness of fit of the model, and is defined as
D(6,)=E, {-2logp(Z |6, ,M)|Z}. (13)
Here, dk is the effective number of parameters in M, , and is defined as
(14)

d, =E, [-2log p(Z |6,,M,)|Z]+2logf (Z | 6).

in which & is the Bayesian estimate of € . Let {Hk(t) :t =1,...,T } be a sample of observations simulated

from the posterior distribution. The expectations in Equations (19) and (20) can be estimated as follows:
2 T
E,{-2logp(Z [6, .M k)IZ}=—T—Z|09 P(Z [65,M,). (15)
t=1

The model with the lower DIC value is chosen in Bayesian LVMSs. We analyzed the same data using two
populations of NLVMs using the same measurement model to demonstrate how to use DIC for model
comparison. The OpenBUGS application generates the DIC values for two populations of NLVMs using
actual data.

5. A Case Study

Let's have a look at the data that may be utilized to derive conclusions for various, independent samples
that are chosen from the natural history based on the research of a rural drug discovered in Ohio (n=200)
and Kentucky (n=200) in the USA between the years 2003 and 2005 (Booth et al., 2006).

The BSI-18 scale, which examined three categories of mental illnesses and took into account factors
including somatization (SOM), depression (DEP), and anxiety (ANX), experienced several more
modifications.

There are two covariates in each group of the sixteen variables that make up the data. Additionally, all of
them were assessed using the following ordered categorical variables: (1, not at all; 2, a little bit; 3,
moderately; 4, quite a bit; 5, extremely) are changed to only two categories to be dichotomous data (Wang
& Wang, 2012).

This actual data analysis, in which 16 manifest variables are associated to two fundamental latent variables
(n(g),‘;“i(f) i(g))from two populations nonlinear LVMs defined in Equations 17 and 18, provides some

insight into the empirical performance of the suggested Bayesian technique.
Because of this, a few quadratic and interaction effects of the latent variables are taken into account. We
utilize a real data set connected to random vectors with G=1,2, to demonstrate the Bayesian approaches in

analyzing nonlinear LVMs with dichotomous variables.
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Iet ylg) _(y|(?)a |(g)’

I16) be the latent continuous random vector, which corresponds to the

dichotomous variables Z ,‘?,z 9 ..,29 where i(g),i =1,...,n are dichotomous variables that are related
to three latent variables W (U.(g ‘f.l ,f ) 6‘ ,(g’,ai“;’, ,(%) with the following values of

the parameters in 2@ = (49, 412,..., f9) and A9 = (49", A9",.., A9"Y

0 o (P S L) ) B S S S (S Y SV S S
7y [V S S S S R S R A ) N N S N SV

*

0 o 0o o 0 0o o
2 * * * * * * * * *
A0 0 0 0 o W@ G A 0 00

* * * * * * * *

(= L0 2 2 2
1 A2(1) A?El) 1&1) j’él) ﬂel 0
1

© o @ @ > (2) (2)
D g __ D 11 12 11 12
- @ @ |’ (2) (2)

21 22 21 22

where parameters with an asterisk are treated as fixed for identifying the model.
@ _

*

*

*

0

*

0

*

0

*

0

000 0 o 0 o 00 o o o 149 89

The true values of elements in 4@ and ﬂ,”(g) are given by: g4 = =

*

0

*

0

o0 0 0 0 0 00 0 o 0 143 a3 A3 Y

(16)

0.0 ;

A0 =29 =..= 2% =0.8. The relationships of the latent variables inw () = (79, £9£9)) are

assessed by the nonlinear structural equation, which is described in the following equations.

1 1 1)y, Oy O 1)y, (1) £ 1)y (1) £(1) £ 1

ﬂi(): +,82()X +ﬂ§)x()x( +ﬂ§)x()é:i()+ﬁ5()x()§|()§|()+71 é:l(l)
@ @ 1) 1)

72 é-a. +73)‘f| él)"' § ‘f( é‘i(

2 2 2 2 2 2 2 2 2 2 (2 2 2 2
(2 2 2 2 2 (2 2 2 2

1 1 1 H ,Q
Here,F()=(ﬁ1(), DB BE B D D),

and T@ =(8%, g2, g2 g2 pA 42 @ 2 ),

(17)

(18)

;
and F(x;” f(g) (X xig XX xPET xPEVED 6D 6D EDED EDET) . The true values

for 9 = 4@ =49 = 49 0.6 The true values for B9 = B9 =...= B9 =0.6. The covariates X, come

from arbitrary distributions that give dichotomous data.

In the conjugate prior distributions of the parameters, the following precise prior inputs of the hyper-

parameter values are taken into account:
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Prior I: Elements in ¢, Ag, and ﬂogk in Equation (10) are set equal to the following values with
initial values are equal to 1 for two groups of data;

R, =8®, H H, and H. are taken to be 0.25 times the identity matrices; cr,, =10 ,

Ou ’

Pow =8, p, =30.

Prior II: Elements in 4, A,, and X’Oe;k in Equation (10) are set equal to the following values with initial

0k

values are equal to 0.5 for two groups of data;

, =8® H,, ,H, and H0§k are taken to be 0.25 times the identity matrices; <, =10 ,

Lok =8, p, =30.

The parameter estimates for a situation with a small sample size can be significantly impacted by the prior,
which is informative.

Using Open BUGS, a data set (n1=200, n2=200) was analysed. The MCMC method for data analysis
required more iterations to converge when compared to the Bayesian analyses of LVMs using data.
Bayesian estimates for the truncated normal distribution and censored normal distribution in two
populations of nonlinear LVMs were derived using T=10000 Iterations after discarding (1000) burn-in
Iterations. The Open BUGS software (Spiegelhalter et al., 2007) can implement Bayesian estimates of the
parameters in nonlinear LVMSs. To demonstrate this, we apply Open BUGS to analyse the current aid data
based on Equations (17) and (18) with different prior inputs.

6. Results and Discussion

This section's goal is to give the findings of a simulation research for NLVMs in order to demonstrate how
well the DIC and Bayesian estimates work empirically when compared to other models. However, we have

the foIIowing proposed four models for g=1,2:

(9) (g) (9) (9) £(9) (9)y (9) £(9) (9) (9) £(9) (9)
ﬁ Xiy +BX G+ B G 0 é:ul +7, Gy +6

(9) (g) (g (g) (9) (9) (9) £(9) (g) (g) (9) £(9) (9) £(9) (9) £(9) (9)
ﬂ Xt LG T BUX G B XX G A1 G &+

IB(g)X(g)+ (g))((g)éal(g)+ (g)x(g)é(g é(lg)+7/1(g)§|(19)+}/§g)é(3)+7/§g)§|g)§i(lg)+7/£g)§i(g)§i(g)+5i(g)
10, @ (@ 0y Oy @ 1 1 1y Q) @ 1) g(1

4 77. ,[31()X()+ﬂ2)x +ﬁ3()X()X()+ﬂi)X 5()Jr ()X()é()§2+71()§()

1) £(L 1) £(1) £(1 1) £(1) £(1 1

()éz()ﬂ,s()é()ézl()Jr ()é()ésl() 6}()

This paper introduces the Bayesian technique for analysing two populations nonlinear LVMs for
dichotomous variables and covariates. Using recently created powerful instruments and the completely free
statistical program Open BUGS, the model selection statistic (DIC) and the Bayesian analysis of the
unobserved parameters are both achieved. As a result, real data may easily be applied to our suggested
strategy. The purpose of this analysis is to use Bayesian nonlinear two populations LVMs with
Dichotomous variables and covariates. The analysis of dichotomous data in LVMs is subject to various

limitations. First, data are typically originating from dichotomous variables and covariates due to the nature
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of discrete data in the behavioural, medical, and social sciences. It is highly important to discover an
alternate approach to manage the problem of dichotomous variables and covariates because when analysing
dichotomous data, the fundamental premise in LVMs that the data originate from a continuous normal
distribution is plainly broken. Thus, it is obvious that drawing incorrect inferences from dichotomous
variables when considering them consistently as normal may do so (see Lee et al., 1990; Olsson, 1979).
Assessing these types of data more effectively involves treating them as observations from a concealed
continuous normal distribution with unique threshold specifications.
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populations NLVMs with Dichotomous Variables using Censored Normal Distribution
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Figure 1. Two chains of observation corresponding to (a) iﬁ ; (b)
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TABLE 1. Bayesian Estimation of two populations NLVMs with Dichotomous Variables of First Group
using Censored Normal Distribution

Para Est. SE HPD Interval Para Est. SE HPD Interval
u1<1) -0.985 0.222 [-1.433, -0.572] Ay P 1.528 0.281 [1.022,2.121]

W -0.308 0.231 [-0.762, 0.148] e 0.970 0.223 [0.590,1.476 ]
W2 92
P-B(l) -0.334 0.201 [-0.741, 0.045] T 0.831 0.202 [0.472,1.269 ]
u4(1) -0.489 0.200 [-0.894, -0.112] T 1.121 0.234 [0.714,1.622 ]
P«S(l) -0.123 0.215 [-0.549, 0.297] T 0.960 0.217 [0.581,1.437 ]
e 0.121 0.214 [-0.284, 0.556] e 0.666 0.181 [0.378,1.083 ]
o -0.273 0.196 [-0.640, 0.119] e 0.841 0.230 [0.454,1.364 ]
g -0.066 0.227 [-0.514, 0.368] e 0.909 0.248 [0.512,1.472]
e -1.150 0.237 [-1.639, -0.723] e 0.404 0.159 [0.152,0.775 ]
o -0.860 0.224 [-1.334, -0.458] e 0.824 0.201 [0.502,1.304 ]

W -0.491 0.219 [-0.917, -0.066] 0.934 0214 [0.605,1.458 ]
Haa 1)

b1

© -1.224 0.233 [-1.727, -0.810] b O 0.770 0.176 [0.487,1.193 ]
Hi2 12
P«13(l) -0.367 0.278 [-0.909, 0.168] <1)22(1) 0.894 0.225 [0.531,1.437 ]
u14(l) -0.153 0.208 [-0.573, 0.247] y1(1) 0.771 0.277 [0.264, 1.375]
P«ls(l) 0.033 0.228 [-0.409, 0.483] "{2(1) 0.770 0.293 [0.153, 1.333]
P«le(l) -0.152 0.233 [-0.629, 0.297] y3(1) -0.032 0.232 [-0.476, 0.410]
P«17(l) -1.373 0.266 [-1.934, -0.901] y4(1) -0.203 0.213 [-0.632, 0.217]
e -0.677 0.246 [-1.157, -0.223] b, -0.168 0.221 [-0.605, 0.278]
e 1.633 0.297 [1.076,2.251] B, -0.173 0.266 [-0.679, 0.353]
e 0.935 0.216 [0.566,1.412] b -0.281 0.336 [-0.932, 0.362]
e 0.771 0.190 [0.443,1.177 ] e 0.390 0.332 [-0.239, 1.070]
e 1.154 0.252 [0.713,1.691 ] b 0.138 0.392 [-0.671, 0.855]
e 1.238 0.251 [0.806,1.790 ] %8(1) 0.512 0.128 [0.318,0.813 ]
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TABLE 2. Bayesian Estimation of two populations NLVMs with Dichotomous Variables of Second Group
using Censored Normal Distribution

Para Est. SE HPD Interval Para Est. SE HPD Interval
wm®  -1.157  0.250 [-1.659, -0.674] re2®  1.654 0.314 [1.068, 2.275]
L@ 0124 0.223 [-0.583, 0.304] e 1.225 0.278 [0.768, 1.869]
L@ 0214 0.240 [-0.697, 0.261] hip®  0:043 0.133 [-0.212, 0.314]
W@ 0647 0.240 [-1.158, -0.219] hp,® 0020 0.118 [-0.252, 0.219]
@ 0430 0223 [-0.884, -0.012] oy  -0.065 0.135 [-0.326, 0.210]
W@ 0182 0221 [-0.621, 0.240] hy® 0597 0.180 [0.313, 1.002]
W@ 0666 0.225 [-1.121, -0.228] dyss @ 0.640 0.178 [0.349, 1.052]
@ 0138 0.248 [-0.637, 0.350] hig® 0726 0.184 [0.413, 1.149]
W@ 0942 0.256 [-1.462, -0.417] hps® 0277 0.117 [0.086, 0.543]
ne? 0793 0207 [-1.219, -0.420] hig® 0674 0.180 [0.371, 1.043]
u,@ 0674 0190 [-1.073, -0.334] e 1.081 0.253 [0.640,1.619 ]
up® 0927 0207 [-1.356, -0.542] b? 0894 0.192 [0.587,1.306 ]
wa? 0729 0.306 [-1.341, -0.158] b? 1047 0.250 [0.639,1.602 ]
w® 0475 0240 [-0.971, -0.031] n@  0.924 0.290 [0.372, 1.477]
we® 0365 0.240 [-0.853, 0.090] p? 0823 0.322 [0.251, 1.550]
we? 0317 0247 [-0.806, 0.157] @ 0306 0.232 [-0.807, 0.151]
u,® 1252 0268 [-1.803, -0.738] @ 0011 0.235 [-0.441, 0.476]
we? 0936 0271 [-1.501, -0.440] @  -0.063 0.232 [-0.514, 0.399]
@ 13260270 [0.863,1.878 ] g2  0.260 0.329 [-0.381, 0.970]
2@ 1361 0306 [0.855,2.040 ] @ 0284 0.242 [-0.153, 0.796]
@ 0950 0219 [0.564,1.401 ] @  0.006 0.340 [-0.662, 0.695]
2e@ 11720257 [0.743,1.755 ] p.@ 0226 0.337 [-0.425, 0.891]
rer®  1.203  0.263 [0.770,1.782 ] Ve 0.541 0.132 [0.344,0.854 ]
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Para Est. SE HPD Interval Para Est. SE HPD Interval

TABLE 3. Bayesian Estimation of two populations NLVMs with Dichotomous Variables of First Group
using Truncated Normal Distribution
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w®  -1.013  0.227 [-1.462, -0.574] A 1.597 0.303 [1.062,2.264]
W® 0342 0251 [-0.834,0.146] P 1.014 0.231 [0.611,1.509]
paid 028 0P [RARRANY  eame® OB 037 BRI
H4m 0521 0206 [-0.950,-0.134] /»112”) 1.120 0240 [0.694,1.633]
w® 0127 0213 [-0.544,0.300] doppd  0:995 0.225 [0.613,1.490]
w® 0110 0216 [-0.301,0539] hyg® 0,684 0.178 [0.401,1.099]
w® 0279 0203 [-0.683,0.123] dyss @ 0-856 0.207 [0.519,1.307]
® 0076 0235 [-0533,0.382] hoyga®  0.935 0.218 [0.563,1.421]
w® 1192 0242 [-1677,-0.718] dopad  0.415 0.152 [0.163,0.759]
we® 0872 0224 [-1.333,-0.461] hoygd 0881 0.233 [0.526,1.414]
u,® 0499 0218  [-0.9260.072] b 0.953 0.224 [0.583,1.476]
up® 1288 0249  [-1.801,-0.817] b 0.806 0.199 [0.492,1.275]
wa® 0379 0282 [-0.9350.173] bl 0.945 0.247 [0.570,1.520]
w® 0158 0216 [-0.595,0.258] n® 0710 0.254 [0.197,1.211]
we® 1013 0227 [-1.462,-0.574] p®  0.790 0.289 [0.217,1.398]
we® 0342 0251 [-0.834,0.146] O -0.042 0.236 [-0.481,0.439]
u,® 0348 0203 [-0.768,0.032] @ -0.180 0.254 [-[0.679,0.342]
e 0521 0206 [-0.950,-0.134] g0  -0.161 0.206 [-0.577,0.241]
y® L7140 0309 [1.189,2.391] 0 0176 0.231 [-0.620,0.298]
2y 0943 0227 [0.561,1.463] B,  -0.169 0.309 [-0.748,0.435]
g 0795 0193 [0.459,1.210] o 0337 0.350 [-0.360,0.995]
e 1180 0230 [0.773,1.665] @ 0057 0.403 [-0.720,0.888]
pe® 1264 0258 [0.832,1.854] ye®  0.505 0.110 [0.330,0.761]

TABLE 4. Bayesian Estimation of two populations NLVMS with Dichotomous Variables of Second

Group using Truncated Normal Distribution
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-1.166 0.251 [-1.675,-0.679] @
M1 Mg

@) -0.155 0.238 [-0.641,0.306]

1.671 0.314 [1.141,2.353]

e 1.264 0.270 [0.787,1.862]

Para -02%36 0.2 [-0.733828&krval A 102I?‘zara 0.03ft, 0.133¢ [-0.2174®8%kkerval

THC 2 1 CLIfR888ks1]  , @™ OW&0 01810 [O2HPebT045]

112

e -0.442 0.227 [-0.899,0.004] e -0.067 0.133 [-0.330,0.204]
e -0.185 0.228 [-0.620,0.275] e 0.583 0.148 [0.329,0.906]
e -0.662 0.215 [-1.097,-0.250] e 0.629 0.172 [0.364,1.044]
1 -0.115 0.260 [-0.619,0.409] e 0.740 0.186 [0.422,1.154]
1 -0.953 0.251 [-1.465,-0.463] e 0.297 0.125 [0.087,0.589]
e -0.805 0.207 [-1.236,-0.425] e 0.670 0.171 [0.381,1.068]
e -0.687 0.198 [-1.103,-0.327] e 1121 0.276 [0.660,1.731]
e -0.970 0.209 [-1.419,-0.591] b 0.921 0.206 [0.569,1.385]
e -0.712 0.316 [-1.357,-0.115] o 1.063 0.287 [0.630,1.725]
e -0.466 0.242 [-0.945,-0.003] e 0.939 0.272 [0.393,1.477]
e -0.368 0.237 [-0.837,0.102] e 0.870 0.320 [0.293,1.572]
e -0.314 0.263 [-0.838,0.221] e -0.293 0.218 [-0.747,0.112]
e -1.299 0.268 [-1.852,-0.805] e -0.057 0.256 [-0.589,0.426]
e -0.927 0.257 [-1.460,-0.461] 5,0 -0.085 0.240 [-0.558,0.405]
e 1.395 0.270 [0.924,1.966] 5,0 0.264 0.324 [-0.334,0.931]
e 1.377 0.260 [0.935,1.970] e 0.294 0.237 [-0.144,0.784]
e 0.977 0.217 [0.613,1.469] e 0.107 0.331 [-0.487,0.762]
e 1.195 0.247 [0.782,1.730] e 0.142 0.316 [-0.459,0.715]
e 1.219 0.245 [0.809,1.791] e 0.568 0.133 [0.362,0.878]

TABLE 5. Bayesian Estimation of two populations NLVMs with Dichotomous Variables of First Group
using Continuous Normal Distribution
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1w® 0.302 0.079 [0.146,0.459] e 0.517 0.098 [0.330,0.711]
1s® 0.301 0.078 [0.149,0.459] % 10,® 0.462 0.101 [0.265,0.669]
ot 0-256 0:070 f0-119.0-392] T 0-658 0105 {0-459.6-869]
e ot PROBR P oF o PRIV

“;8 00833  08b%0  [-0f92878%4) ha 08y Ol 10692505315

ﬁza) 0332 0076 [0.184,0.482] Xl:;(z) 0.579 0.091 [0.405,0.765]

Lo 0205 0079 [0.138,0.454] e 0.687 0.108 [0.484,0.904]
Lo 0374 0077 [0.221,0.521] e 0.662 0.105 [0.460,0.872]
Lo 0071 0.063 [-0.054,0.196] g 0.104 0.063 [-0.021,0.229]
O 0142 0.084 [0.019,0.268] g 0.487 0.093 [0.306,0.672]
L® 0253 0073 [0.111,0.396] 5,0 0.134 0.018 [0.104,0.173]
WO 0085 0.063 [-0.088,0.150] b 0.078 0.014 [0.053,0.109]
L 0257 0.088 [0.058,0.445] b 0.152 0.021 [0.116,0.199]
L0 033 0.081 [0.172,0.488] e 0.326 0.135 [0.067,0.589]
L 0373 0.084 [0.206,0.537] e 0.211 0.151 [-0.084,0.505]
WO 0329 0.080 [0.167,0.481] e 0.208 0.289 [-0.358,0.795]
WO 0015 0.048 [-0.077,0.109] e 0.015 0.245 [-0.457,0.501]
O 0188 0071 [0.049,0.328] B, 0.015 0.075 [-0.132,0.161]
O 0993 0118 [0.766,1.233] B, -0.040 0.170 [-0.370,0.299]
n,® 0T 0125 [0.532,1.020] B0 -0.106 0.365 [-0.825,0.625]
O 0589 0112 [0.375,0.812] B0 0.081 0.352 [-0.602,0.797]
ay® 0854 0120 [0.625,1.091] B0 -0.010 0.404 [-0.807,0.773]
a® 0859 0127 [0.616,1.115] e 0.173 0.022 [0.134,0.221]

TABLE 6. Bayesian Estimation of two populations NLVMs with Dichotomous Variables of Second
Group using Continuous Normal Distribution
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L@ 0309 0076 [0.161,0.460] @ 0390 0.088 [0.217,0.567]
L@ 0207 0.085 [0.079,0.334] r,® 0659 0.099 [0.471,0.859]
W@ 0252 0077 [0.104,0.405] rp,® 0514 0.084 [0.352,0.680]
Lo 0324 0076 [0.179,0.476] R 0483 0.103 [0.288,0.689]
@ 0193 0.080 [0.038,0.350] res@ 0588 0.102 [0.390,0.793]
w? 0333 0077 [0.182,0.481] hies® 0640 0.097 [0.448,0.836]
@ 0153 0.063 [0.027,0.279] r@ 0113 0.060 [-0.003,0.233]
W@ 0165 0.058 [0.052,0.280] g 0347 0.085 [0.185,0.518]
L@ 0204 0.066 [0.069,0.335] b ® 0.122 0.016 [0.094,0.157]
L@ 0113 0058 [0.003,0.226] @ 0072 0.013 [0.048,0.100]
W@ 0141 0100 [-0.054,0.339] 4,0 0150 0.020 [0.115,0.194]
W@ 0202 0078 [0.046,0.351] L@ 0588 0.497 [-0.379,1.569]
W@ 0232 0.080 [0.078,0.393] L@ 059 0.498 [-0.372,1.571]
W@ 0247 0082 [0.081,0.399] L@ 0597 0.501 [-0.393,1.560]
W@ 0035 0.046 [-0.055,0.126] L@ 0601 0.503 [-0.397,1.576]
W@ 0124 0.066 [-0.007,0.254] p@ 0608 0.497 [-0.351,1.577]
1@ 0971 0128 [0.729,1.230] p@ 0603 0.505 [-0.366,1.591]
py@ 101 0124 [0.780,1.264] p@ 0602 0.498 [-0.360,1.604]
R,@ 0664 0108 [0.457,0.879] p@ 0600 0.497 [-0.362,1.592]
p@ 0892 0128 [0.650,1.151] p@ 0600 0.496 [-0.377,1.583]
Ag@ 0926 0.127 [0.684,1.191] ya® 0236 0.030 [0.182,0.301]

Table 7. Performance of Deviance Information Criterion DIC for two populations NLVMs with
Dichotomous Variables Using Censoring, Truncation and Continuous Normal Distribution

Interval Continuous
Censored Normal Interval Truncated Normal Normal
DIC 5875.0 5887.0 6903.0
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Tables (1:2) contain the results for the first and second groups using Type | and Type Il inputs,
dichotomous variables, covariates, hidden continuous normal distributions (censored normal distributions)
for variables, hidden continuous normal distributions (truncated normal distributions with known
parameters), and two types of thresholds (with equally and unequally distances for categories). In the first
and second groups, the SD values are noticeably low.

The results for the first and second groups under Type | and Type Il inputs, dichotomous variables,
covariates, hidden continuous normal distribution (truncated normal distribution with known parameters),
as well as two types of thresholds (with equally and unequally distances for categories), are reported in
Tables (3:4). We noticed that the first and second groups' SD values are rather low.

The parameter with the Highest posterior density (HPD) was determined. When adopting a censored
normal distribution or a truncated normal distribution, we found that the HPD intervals work well for
dichotomous variables.

We re-analysed the data sets using a nonlinear latent variable model (M4) with interaction term to show the
efficacy of DIC for model comparison. The DIC values were contrasted with those obtained using the
appropriate model. Tables 5 and 6 present the findings.

The DIC values of censored normal distribution, truncated normal distribution with equally distances of
thresholds, are (18070.0) and (19310.0) respectively.

Using a censored normal distribution, the model that best fits the DIC of LVMs with dichotomous data is
less accurate than using a truncated normal distribution. For dichotomous variables with censored normal
distribution, it performs exceptionally well.

The DIC values of censored normal distribution, truncated normal distribution with equally distances of
thresholds, are (17580.0) and (19350.0) respectively.

A model that fits the DIC of LVMs with dichotomous data using a censored normal distribution is less
accurate than one that fits the DIC of LVMs with dichotomous data using a truncated normal distribution
with uneven threshold distances. For dichotomous variables with censored normal distribution, it performs
exceptionally well.

The censored normal distribution with unbalanced distances between thresholds (17580.0) is the best fitted
model with the lowest DIC value. Additionally, the truncated normal distribution's DIC value with equally
spaced thresholds is (19310.0). As a consequence, we discovered that the DIC's performance is
unacceptable and would be even worse when used with dichotomous data and a truncated normal
distribution with unbalanced threshold distances.

Plots of several simulated sequences of the individual parameters with varied beginning values are used to
track the convergence of the Gibbs sampler and are shown in Figures (4 and 5, respectively). After
eliminating (1000) burn-in rounds in two populations nonlinear NLVMs for censoring and truncation
normal distribution, Bayesian estimates were obtained from T=10000 iterations for two groups.

7. Conclusions and Recommendations

In the social and behavioural sciences, two populations nonlinear models with nonlinear effects, nonlinear

covariates, and latent variables are quite prevalent. The initial goal of this investigation was to acquire all
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the estimated parameters using nonlinear LVMs for two populations, nonlinear covariates, and latent
variables. The second goal is to use hidden continuous normal distribution (censored normal distribution
and truncated normal distribution) to solve the problem of dichotomous variables and to use hidden
continuous normal distribution (truncated normal distribution with known parameters) to solve the problem
of dichotomous covariates. Two different thresholds (with equally and unequally spaced categories) were
used in the suggested techniques. This presumption, nevertheless, is likely to be broken in many real world
scenarios. Future study may focus on creating a nonparametric Bayesian technique to loosen the normality
assumption in nonlinear NLVVMs for two populations with missing data.

There are LVM cases where nonlinear elements of latent variables are included into equations. Bollen and
Paxton (1998), Schumacker and Marcoulides (1998), and others have noted that the lack of applications is
not attributable to the validity of the substantive arguments that suggest the existence of nonlinearity, but
rather to the technical difficulty and lack of understanding of the current statistical methods. In this study, a
Bayesian technique is suggested for analysing nonlinear models including two populations and
dichotomous variables. Due to the complexity of the proposed model, we also offer statistical methods to
estimate standard deviations and model comparison using the Deviance Information Criterion (DIC). As
we've shown, using various MCMC methods to supplement the data can help with issues brought on by the
nonlinear causal links between the latent factors and the discrete nature dichotomous data manifest
variables. More specifically, the fundamental concept of our work was motivated by adopting a popular
strategy from recent statistical computing work (see Rubin, 1991) that formulated the underlying difficult
problem in order that, when supplementing the actual observed data with the fictitious missing data, the
analysis would be fairly simple with the full data. This approach is quite effective and may be used with

other, more intricate models.

Acknowledgment

The authors are very grateful to the Northern Technical University, Administrative Technical College,
for their provided facilities, which helped improve this work's quality.

Conflict of interest

The author has no conflict of interest.

References

1- Akaike, H. Information theory and an extension of the maximum likelihood principle. Proceedings of the 1973 Second
international symposium on information theory, (1973); 267-281.

2- Bollen, K. A. and Paxton, P. Interactions of latent variables in structural equation models. Structural Equation Modeling, (1998); 5,
267-293.

3- Booth, B. M., Leukefeld, C., Falck, R., Wang, J. and Carlson, R. Correlates of rural methamphetamine and cocaine users: Results
from a multistate community study. Journal of Studies on Alcohol and Drugs,(2006); 67(4), 493.

4- Broemeling, L. D. Bayesian analysis of linear models: Dekker New York.(1985).

5- Cai, J.-H., Song, X.-Y. and Lee, S.-Y. Bayesian analysis of nonlinear structural equation models with mixed continuous, ordered
and unordered categorical, and nonignorable missing data. Statistics and its Interface.(2008); 1, 99-114.

79



Iragi Journal of Statistical Sciences, Vol. 20, No. 2, 2023 (57-81)

6- Geman, S. and Geman, D. Stochastic relaxation,Gibbs distribution,and the Bayesian restoration of images. IEEE Transactions on
Pattern Analysis and Machine Intelligence,(1984); (6), 721-741.

7- Lee, S.-Y. and Song, X.-Y. Basic and advanced structural equation models for medical and behavioural sciences. Hoboken:
Wiley.(2012)

8- Lee, S.-Y. Bayesian Analysis of Nonlinear Structural Equation Models with Nonignorable Missing Data. Psychometrika, (2006);
71(3), 541-564. doi: 10.1007/s11336-006-1177-1.

9- Lee, S.-Y., Poon, W.-Y. and Bentler, P. Full maximum likelihood analysis of structural equation models with polytomous variables.
Statistics & probability letters, (1990); 9(1), 91-97.

10- Lee, S.-Y. and Shi, J.-Q. Bayesian Analysis of Structural Equation Model With Fixed Covariates. Structural Equation Modeling:
A Multidisciplinary Journal, (2000); 7(3), 411-430..doi: 10.1207/s15328007sem0703_3.

11- Lee, S.-Y. and Song, X.-Y. Model Comparison of Nonlinear Structural Equation Models with Fixed Covariates.
PSYCHOMETRIK, (2003); 68(1), 27-47.

12- Lee, S.-Y. and Song, X.-Y. (2004). Evaluation of the Bayesian and maximum likelihood approaches in analyzing structural

equation models with small sample sizes. Multivariate Behavioral Research, (2004); 39(4), 653-686.

13- Lee, S.-Y., Song, X.-Y. and Cai, J.-H. A Bayesian approach for nonlinear structural equation models with orderd categorical
variables using logit and probit links. Structural Equation Modeling, (2010); 17(2), 280-302.

14- Lee, S.-Y., Song, X.-Y. and Tang, N.-S. Bayesian Methods for Analyzing Structural Equation Models With Covariates,
Interaction, and Quadratic Latent Variables. Structural Equation Modeling: A Multidisciplinary Journal, (2007); 14(3),
404-434. doi: 10.1080/10705510701301511.

15- Lee, S.Y. and Tang, N.-S. Analysis of nonlinear structural equation models with nonignorable missing covariates and ordered
categorical data. Statistica Sinica, (2006); 16(4), 1117.

16- Lee, S.-Y., Song, X.-Y. A Bayesian Approach for Multigroup Nonlinear Factor Analysis. Structural Equation Modeling, (2002);
9(4), 523-553.

17- Lu, B., Song, X.-Y. and Li, X.-D. Bayesian analysis of multi-group nonlinear structural equation models with application to
behavioral finance. Quantitative Finance, (2012); 12(3), 477-488..doi: 10.1080/14697680903369500

18- Olsson, U. Maximum likelihood estimation of the polychoric correlation coefficient. Psychometrika, (1979); 44(4), 443-460.

19- Rubin, D. B. EM and beyond. Psychometrika, (1991); 56(2), 241-254.

20- Schumacker, R. E. and Marcoulides, G. A. Interaction and nonlinear effects in structural equation modeling: Lawrence Erlbaum
Associates Publishers ,(1998).

21- Shi, J. Q. and Lee, S. Y. Latent variable models with mixed continuous and polytomous data. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), (2000); 62(1), 77-87.

22- Song, X.-Y. and Lee, S.-Y. A maximum likelihood approach for multisample nonlinear structural equation models with missing

continuous and ordered categorical data. Structural Equation Modeling, (2006); 13(3), 325-351.

23- Song, X.-Y. and Lee, S.-Y. (2006). Bayesian analysis of structural equation models with nonlinear covariates and latent variables.
Multivariate Behavioral Research, (2006); 41(3), 337-365 .

24- Song, X.-Y., Lu, Z.-H., Hser, Y.-I. and Lee, S.-Y. A Bayesian Approach for Analyzing Longitudinal Structural Equation Models.
Structural Equation Modeling: A Multidisciplinary Journal, (2011); 18(2), 183-194. doi: 10.1080/10705511.2011.557331.

25- Song, X.-Y. and Lee, S.-Y. Bayesian analysis of latent variable models with nonignorable missing outcomes from exponential
family. Statistics in Medicine, (2007); 26, 681-693.

26- Spiegehalter, D., Thomas, A., Best, N. G. and Lunn, D. OpenBUGS user manual. Medical Research Council Biostatistics Unit,
Cambridge. (2007)

27- Spiegelhalter, D. J., Best, N. G., Carlin, B. P., and & van der Linde, A. Bayesian measures of model complexity and fit (with
discussion). Journal of the Royal Statistical Society, Series B,(2002); 64(4), 583-639.

28- Wang, J. and Wang, X. Structural equation modeling: Applications using Mplus: John Wiley & Sons. (2012)

29- Yang, M. and Dunson, D. B. Bayesian Semiparametric Structural Equation Models with Latent Variables. Psychometrika, (2010);
75(4), 675-693. doi: 10.1007/s11336-010-9174-4.

80


doi:%2010.1007/s11336-006-1177-1
doi:%2010.1207/s15328007sem0703_3
doi:%2010.1207/s15328007sem0703_3
doi:%2010.1080/10705510701301511
doi:%2010.1080/14697680903369500
doi:%2010.1080/14697680903369500
doi:%2010.1080/10705511.2011.557331
doi:%2010.1007/s11336-010-9174-4.

Iragi Journal of Statistical Sciences, Vol. 20, No. 2, 2023 (57-81)

I sl aladiady dlalsl) el ptall zilad A il 40l clily Julas
NERPILYE Qe Ly G g Qg8

s -3 ya) ALl il nalad) - (Jom g — AoV ] Ail) A — Aa slaall g eliaa ) il avd!

a5 L le 2 5L i SBSE Aalal —  lal) A lnly ) ple a2

A3 AS il Shysid) (e Slise ge Galie 7 3sad 2 15lg IS ke 23l alatinl g )l L cuad) 138 3 sAuadAY)
Sl paial Lot Lol g ASiglly (oali)l) z3saill o ol Lghny oSa ddlide z3la o eliy AalSH @ paially dadadl) ye
By A slal "Gus Aled’ Aaph Gy G Goslal aladialy Geedinal Bobd ) Al Shysid) zise b 45
OSa ) el yaiaal) aall aj il ey Lol Liad a1 Ll Wby Layaig ddbidall cilbild) Lol el e cilgilaally
Sy lilall didas Lale (gohaiy Al dabiaal) culsall (and DA (o Wiy Al dlalll dalag go0 o ol acUaly 4id)e
Al ULl el ACA s dal (e dalatind i Lo W . Lgads Laaill & Gaus e AT Slie 32T 2ok aladsn) Lad
) ) Dol sacieadl AaBA YY) (e 8aliinl) Liad Wiy« paidl) andall 35S Adide <l piia Lehayy July
S A<ha Ao ¢ Ancsal) zailly ¢ legad SSY) Culladlly ¢ bl sUadl) Uai 8 il Cilgas paes dali Al ddlas)
2ol phasiuly gia lgle Jgemal) o 1) il Addn iy plasiols LBkl aaes L) 25 L1305 HLasD deadiel) 4als
Q3 ) arisill il ¢ ¢ Juadl OIS LB et s aulal) anisill il of DIS i (e zealsll (e -OpenBugs
i) alall il il ¢ Taly ¢ adaiiall cualasy

A i) el il A6 el LAl ULl Ga el Ga dilad AlS spaie z 3l A clalgl)

81



