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Introduction

Extreme temperature events, such as heat waves, have significant impacts on various domains, such as
agriculture, energy, and public health. Modeling these extreme events accurately is crucial for better
understanding their behaviour and for effective planning and mitigation of the risks associated with them.
Extreme value models have shown promising performance in modeling such types of data. In a spatial
context, a max-stable spatial process is considered, and the models of this process will be in multivariate
case [1]. This situation itself poses a challenge because these events follow multivariate extreme value
(MGEV) distributions, and no existing models can capture the dependence structure of these events.
Additionally, ignoring the dependencies among the locations and treating them as independent locations
using the Generalized Extreme Value (GEV) distribution for each location will provide an unreal
representation of the events. Despite the models of the max-stable in the bivariate case existing, the limited
number of these models, and the relatively high number of parameters in most of the models also state as
restrictions in the modeling.
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For what is mentioned above, there is a need for a statistical tool that can combine the multivariate
extreme-value theory with models more simple than classical ones, (Smith, Brown-Resnick, and Schlather),
so that can be considered appropriate models for the dependence structure among the locations of the
extreme event. Extreme value copula has gained a lot of attention in recent years for Modeling the
dependence structure between extreme random variables. It is based on the extreme value theory, so these
extreme copulas provide a functional link between multivariate distribution functions and their univariate
margins [2, 3]. In spatial extremes, extreme value copulas play a crucial role. They enable the
characterization of the dependence structure of the extreme event occurring at different locations. By
considering the tail behaviour of these events, extreme value copulas can accurately capture the underlying
dependence patterns. This, in turn, leads to improved modeling and analysis of spatial extremes. For
examples, see [4], [5], [6], [7], and [8].

The report of the International Organization for Migration (IOM) in the UN concerning climate change
published on 11 August 2022 puts Iraq as the fifth-most vulnerable country to climate breakdown, affected
by soaring temperatures, and this requires preparing for assessing the risks associated with this climate
change. Choosing a 2m air temperature to investigate its behaviour in this study was motivated by the
outputs of this report. To address this breakdown, one should first understand the behaviour of the extreme
2m air temperature. This will be done by Modeling this event via the extreme-value copula. The 2m air
temperature was collected from the fifth generation of the European Centre for Medium-Range Weather
Forecasts (ECMWF) atmospheric, land and oceanic climate global dataset ERA5 [9]. This study is devoted
to investigating the behaviour of the two-meter air temperature in Iraq through in-depth analysis by
extreme-value copula with Pickands dependence functions. The modeling of this event has been done by
following the statistical inference on extreme-value copulas introduced in [10] and adaptation of extreme-
value copula to spatial context by considering the parameters are functions of distance among the locations.
The Composite Maximum Pseudo-Likelihood estimation method introduced in [11] has been used in the
modeling.

The paper is organized as follows: the theoretical concepts of extreme-value copula models, and
corresponding Pickands dependence functions. Furthermore, adapting these concepts to the spatial context
has been presented first. Then, the Composite pseudo-likelihood method is used in the parameters
estimation of the copula models presented in Extreme-Value copula section. Preparing the 2m air
temperature in lraq dataset by pre-processing it (examining the stationary, isotropy, tail dependencies, and
symmetry properties), modeling, and choosing the best-fitted model have been done in modeling the 2m air
temperature in Iraq dataset. Finally, the discussions and conclusions of the main results obtained were
presented.

Extreme-Value Copula

In this section, extreme-value copula models and their extension to spatial context used in modeling the 2m
air temperature have been presented. The extreme-value copula will be defined via Pickands dependence
function. Pickands function is a major and important key in extreme-value copula, so choosing different
functions of Pickands leads to different copula models. Since the dataset that will be discussed in the pre-
processing section is symmetric, a symmetric Pickands function, i.e., symmetric extreme-value, will be the
focus of this section. The main fundamental concepts concerning Copula can be found in [12].

Let X=(X,,X;)" be a random vector with multivariate probability distribution function
H(x,,,x;), and marginals G;,j =1,-,d. A function C:[0,1]¢ - [0,1] is said to be a multivariate
copula C(uq, -+, uy) = Pr(U; < uq, -, Uy < ugy), with dimension d if and only if

C(ult'”lud) = H(Gl_l(ul)!'”!GEl(ud))r (1)

where (uq, -+, uy) € [0,1]. The copula C is unique if H is continuous [13]. In extreme value context, let
Xk = (X{‘,---,Xg),k = 1,2,--- be a random vector with i.i.d replications and multivariate copula Cyx, and

let B, : = (By, -+, By) non-overlapping block maxima, such that B, = max;.-, ...,{X*}, and has max-stable
copula
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CBn(ulﬂ""ud) = Cx(ui/n‘_”’ul/n)n. @

The extreme-value copula C exists if and only if

Cp,(Uq,+,ug) = C(ug, -+, uq), as n— oo, 3)

such that
C(ulv Y ud) = exp{‘g(_Gl_l(ul)! Y _Ggl(ud))}! (4)

where £ is a max-stable tail dependence measure [10, 14].

Bivariate extreme-value copula via Pickands dependence function

Since the multivariate extreme events have tail dependence, a Pickands dependence function A:[0,1]¢ —
[1/d, 1] is the most reasonable measure able to quantify the dependence strength among the variables [15].
It has the capability on analyzing rare events, such as extreme weather events. More specifically, Pickands
dependence function is considered an essential tool in bivariate extreme-value copula, because it can reduce
the mapping to one dimension, and Copula is fully characterized in this dimension [13]. Without loss of the
generality, we will define A(-) when d = 2. In extreme context, and under max-stability tail dependence
assumption, we can define Pickands dependence function, so that for all u; = G;(X;) € [0,1],j = 1,2

f(_Gl_l(uJ: _Gz_l(uz))
Gy (wy) + G5 (up)

A (ull uZ) = (5)

Therefore, in the bivariate case, the extreme-value copula in Equation (4) can be expressed by Pickands
dependence function as follows

Cluy,uz) = exp (67 (wy) + G5 (1)) Ay, 1) ) (6)

By Theorem 2.22 in [10] formula of C in (6) will be

o _ Gy (up)
C(uy,uy) = exp ((61 (w) + G; 1(“2))14 [Gl_l(ul) +u;2_1(u2)]), (7)

or equivalently

log(u,) ) ®)

C(uq,uy) =exp|log(u;u,)4 |————
(uy,uy) p< g(uquy) [log(uluz)

Referring that Gj‘l(uj) is the inverse of marginals corresponding to the X;,j = 1,2. Since this study
concerns to block maxima case, then G will follow GEV distribution with location p, scale ¢, and shape &
parameters. A(w) is a convex function with inequality max{w,1 —w} < A(w) <1 ,respectively
correspond to complete dependence and independence. Deferent models of C are determined by models of

A. We will present the most common parametric and symmetric copulas, that will be used in the modeling
in this paper.

1.  Husler-Reiss copula: the spirit of this model is the standard Gaussian model with correlation
function p, which can introduce via Pickands dependence function, so that
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Aw)=(1 - W)‘I’(k(l - w)) + wdf)(k(w)), 9)
where
1 A w Uy
kw) == + —log1 w = Ty (10)

and @ is the univariate standard Gaussian distribution. Let p, -1 as n —» oo, then 1=

V(1 — plog(n) € [0,00) as n — oo. In this model, 1 will be the parameter of such model, under
the assumption that the correlation between the pairwise (U,, U,) increase as the size of sample
increase also [16].

Gumbel copula: this model is one of the Archimedean copulas able to evaluate the dependence
straight in asymptotic limits of maxima (upper tail) of the pairwise (U;,U,). The Pickands
dependence function is

Aw) = [w? + (1 —w)f]Y9, 6 €[1,). (11)

The attraction of this model is the domain of the Logistic distribution function [17].

Galambos copula: this model is the negative of Gumbel copula (derived from negative logistic
distribution), e.g., if C; is Gumbel model, and C; is the corresponding survival copula, then we
can consider C;(uy,u,) is a distribution function of the pairwise (1 — U;,1 — U,), so that the
corresponding Pickands dependence function is

AwW)=1-[w+ @A -w) %]V, §€]0,00) (12)

t-EV copula: Its so-called t-Extreme Value. This model is derived from Student’s distribution of
the pairwise of (U;, U,), with two parameters correlation coefficient p € [—1,1], and degree of
freedom v > 0. The Pickands dependence function of this model can write as

Aw) = (1 - W):E:H(k(l - W)) + W:T{;+1(k(W)): (13)

where

1+U[

k(w) = (=" 0] (14)

and 7,4 is a univariate student’s distribution function with a degree of freedom v. If v — oo, then

[18].

t-EV weakly converges to Hisler -Reiss copula with parameter 1 =

(1p

Adaptation of extreme-value copula to spatial context

In the previous section, the extreme-value copula and corresponding Pickands dependence functions are
presented in general concepts. In this part adaptation of these concepts to spatial extremes will be done. Let
{(Y*(s)}ses, S € R4, d > 1, and k = 1,2,--- be an i.i.d replications of spatial process. Let a,(s) > 0 and
b,(s), a, b € R% be two continuous sequences, if there exist
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Y*(s) — b, (s

{ max_ %}ses = X()}ses, a5 n oo, (15)
with non-degenerate marginals, then X:={X(s)}ses IS a max-stable process, such that
X ~ G(u(s).a(s),f(s)), where G refer to GEV distribution with location u, scale o, and shape &
parameters [19]. The max-stable spatial process X(s) is said to be strictly stationary, if Vs € §,§ c R%,
u(s) =-=u(sg) =, 0(s;) =+ =0a(sy) =0, and &(s;) = - = &(sy) = €. And X(s) is isotropic if
the covariance for each (s,t) € §,§ © R? depends only on the distance, such that cov(s,t) = p(h),
h = ||s —t||. In what follow in this paper, the max-stable spatial process X(s) will be under assumptions
of stationarity and isotropy properties.

When the focus is on extreme values, it is necessary to use more suitable tools for analyzing the spatial
dependence of extremes. Since our aim is modeling using the Extreme-Value Copula concept via Pickands
dependence function, we present the concepts in a spatial context. Let (U(s), U(s + h)) be a pairwise of
spatial process with unit uniform distribution separated by the distance h, such that for all s € §, U(s) =
Gu(s)0s)£(s)(X(s)). The bivariate extreme-value copula corresponding to the pairwise is

Ch(ug,up) = Pr(U(s) Sug, U(s+h) Suy) uy,u, €[0,1]

log(u,
= exp (log(uluz)Ah [7102?5;)2) ) (16)

The Pickands dependence function A, (-) is a function that evaluates the dependence strength between
(U(s), U(s + h)) separated by distance h. Concerning Husler-Reiss Pickands function, the spatial aspect

will be included, so that, the parameter A in Equation (10), will be 4;, = /(1 - p(h))logn, where p(h) is

the spatial isotropic correlation function. Many models of correlation function exist, such as exponential,
power exponential, and many others. As well as for p in t-EV copula model [20]. Concerning Gumbel and
Galambos copula models, respectively with parameters 6 and &, the same consideration will be made. The
fact that, the dependence strength of each pairwise in (U (s),U(s + h)) are varying, and since U(s) is
isotropic, which means this varying will be according to the distance. And most of the time this dependence
strength decreases as h increases. Therefore, using this fact, we will consider the parameters 8 and § to be
the trend across distance. Such that, 8, = Sh, as well as for &, = Bh, where £ is a coefficient of trending.

Composite Maximum Pseudo-Likelihood

A parametric estimation such as the Maximum Pseudo-Likelihood MPL method showed as a useful tool for
estimating copula parameters, especially when the marginals are unknown [21]. Since just the bivariate
extreme copula models exist, the composite likelihood is a reasonable method for estimating spatial
extreme models [22, 23]. The combination of the two likelihood methods composites and pseudo was
defined in [11], named Composite Pseudo-Likelihood CPL. This method is very suitable when using the
copula concept in modeling spatial extremes. For that, this method was used in the Modeling of the extreme
2m air temperature event.

Given a max-stable dataset {X*(s)}ses With iid k=1,---,n replicates, and let {U*(s)}ses =
Ga(s)a(s),2(s) (Xk(s)) is pseudo max-stable spatial process. The Composite pseudo-likelihood function is
given by

n d
L) = Y > loge(@*(s0, (T%(5,); ), an

k=1'i<j
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where ¢ denoted to the likelihood contribution function of the pairwise (ui,uj) at the replication k. In this
study c used as bivariate density of the corresponding extreme-value copula defined in Equation (16). Let
the compact set of the parameters ¢ of ¢ is denoted by @. The estimation of i can be achieved by
maximizing £, so that

¥ = maxL(y). (18)

Since the i.i.d achieved on copula when the marginals are known, such as in this case, the pairwise pseudo-
likelihood estimator i) has asymptotic normality as n — oo, with mean i and covariance matrix of
sandwich form J=X (@)K ()] 1 (), where

0L(Y) L)
oy oy’

8213(1#)]

= E[ 9y 3y"

) and J(Y) = —IE[

respectively are the variance of the score function, and the expected information matrix are computed from
Equation (17). For more details about asymptotic behaviour, see [11], [24], and [25]. The estimation J of
J (@) can be readily obtained from the Hessian provided by the optimization algorithm, and K of K (1) by
the empirical variance of the score contribution of each observation [26]. The selected model will be
according to the corresponding minimum of CLIC* = (D — 1)~1CLIC, where D is the number of locations
in the dataset, and

cLIC = —2{£($) — er(K(B)($) ), (19)

is the Composite Likelihood Information Criterion. CLIC* is very closely to Akaike Information Criterion
AIC, so for simplicity in computations, we shall use AIC instead of CLIC*. See [23] and [26].

Modeling the 2m air temperature in Iraq dataset
Data description and pre-processing

The goal of this section is to model the extreme 2m air temperature in Irag. The hourly 2m air temperature
was collected from the fifth generation of atmospheric land and oceanic climate global dataset ERA5,
produced by the European Centre for Medium-Range Weather Forecasts ECMWEF. This dataset was
collected for the region with a longitude range of 37.5 to 49 degrees, a latitude range of 27.5 to 38 degrees,
and a grid spacing of 11 km during the summer season (June, July, and August) for the years from 1981 to
2022, at times from 11:00H to 17:00H. This collection of data resulted 41 x 37 = 1517 grids and 90528
hourly observations for each grid. Mathematically, let {Y*(s)}ses, S € R?, |S| = 1517, and k =
1,---,90528 be a spatial process represent the 2m air temperature. To ensure the block maxima be i.i.d, a
monthly block maxima B3, was proposed. So that for a non-overlapping replication

{X($)}ses = kéggjio{Y"(s)},

where {X(s)}ses IS a spatial extreme process, for each marginal of s follows GEV distribution, and the
amount 7 X 30 represents respectively the number of hours per day times the number of days per month.

To examine the stationarity of the dataset, the GEV’s parameters u(s), a(s), and &(s) are estimated for
each location s € § of X(s) using the maximum likelihood estimation method. The grids in the three panels
in Figure 1 represent the estimated location ji(s), scale 6(s), shape £(s) parameters for each s € S, |S| =
1517. Noting that, all the computational process in this study has been done by R program with main
package ‘copula’ version 1.1-2, and others.
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Figure 1: The panels respectively represent the estimated parameters /i(s), scale 6(s), shape £(s) for each
grid of the dataset s € §,|S| = 1517

It is clear that each of the three estimated parameters for each grid is approximately equal, especially in the
red region for 2, green in &; and red for & excluding the northeast of Irag, due to the mountains. That
means and from the definition of strictly spatial stationarity, we can consider the dataset has spatial
stationary property. In the following step the spatial extreme dataset {X(s)}ses Will transform into [0,1],
such that foreach s € §

{U()}ses = Gaesy a2 (X (),

where G is the GEV distribution. In what follows, we shall deal with U(s) instead of X(s). It is known the
dependence structure pattern of the events is essential in modeling extreme events. This structure
distinguishes between the models corresponding to asymptotic dependence/ independence structures. So, in
the next step, examine the dataset for which the dependence structure belongs to asymptotic dependence or
independence. This examination will by empirical upper and lower tails dependence measures [27],

1—2u+Cs(uu)
1—u

(20)

(s, t) = lim ,
u-1"
And

- C..(u,
7(s,©) = lim Cor W)

u—0% u

(1)

’

where C,, is the empirical Copula, so that Cs,(u,u) = Pr(U(s) < u, U(t) < u), and (s, t) € S. For more
details, see [10]. The threshold was chosen to be u = 0.975 to ensure there are data for computation. The
pairwise evaluation of ¥(s,t) and y(s,t) of the dataset represented respectively by the first and second
panels in Figure 2. From these panels, the dataset seems to have an upper tail dependence structure, due to
(s, t) € (0,1], as well as for y(s,t). So, we can consider the block maxima U(s) has an asymptotic
dependence structure, and this leads to consider extreme copula models. To verify if the dependence
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structure of the dataset is present in extreme, furthermore, the exchangeability (have symmetric
distribution) between the pairwise locations (s,t), a test hypothesis corresponding to these two
assumptions has been made, (see Figure 3). Once again, the northeastern region of Iraq does not appear a
tail dependence structure, and this is clear on the top and right sides of the two panels. From this result, this
region will be excluded definitely from the modeling.

Upper tail dependence coefficient c; Lower tail dependence coefficient T;

1500 | 273 1500

1000 1000

Locations
Locations

500

0 500 1000 1500 0 500 1000 1500
Locations Locations

Figure 2: Empirical pairwise upper ¥(s,t) and lower j(s,t) tail dependence measures, respectively
represented by the left and right panels. Each grid in the panels represents the corresponding tail
dependence strength between the pairwise (17 (s),0 (t)), (s,t) €S.

Regarding the pairwise extreme-value dependency, 100 locations sampled form & = 1517 for this
purpose. The p -value test with a = 0.05 will be done between the empirical pairwise copula
C(U(s),U(t)) and extreme-value copula with the non-parametric estimate of Pickands dependence
function A(-) under the hypothesis

Hy:CeC vs Hy:CgCr
where C* : = C(u,v) = (uv)*™), A(w) is a Pickands dependence function of w = log(v)/log(uv) [28].
The p-value statistics is illustrated in the lift penal in Figure 3. The blue fill represents that the p-value test

cannot reject H,. In other words, the pairwise (ﬁ(s),ﬁ(t)), (s,t) € § has extreme-value copula. As

illustrated in the left panel, the test in most of the pairwise failed to reject #£,, so we can consider extreme-
value models in modeling the dataset. To ensure this property exists in modeling, the pairwise locations
rejected H, will be excluded from the selection of locations for modeling.

To test the exchangeability between the pairwise (ﬁ(s), ﬁ(t)) (symmetry radial of the underlying

multivariate copula), p-value statistics will be used based on empirical copula [29]. The assumption of the
symmetry copula will be under the hypothesis

Hy:C=C vs H;:C#C,

where C is the survival of C. The right panel in Figure 3 appears that the majority cannot reject ,. Then
we can consider the extreme-value and symmetric models.
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Test of Pairwise Extreme—-Value Dependence Test of Exchangeability for a Pairwise Copula

100 100

75

p>a

. Accept Hy

Reject Hy

p>a

. Accept Hy

Reject Hy

50 50

Sample of locations
Sample of locations

25 25

0 25 75 100 0 25 75 100

50 50
Sample of locations Sample of locations

Figure 3: The panels represent the p-value test with @ = 0.05 for extreme value dependence and the
exchangeability (symmetry) of the copula dataset. The left panel, represent the pairwise (ﬁ(s),ﬁ(t)),

(s,t) € § has extreme-value dependence after collecting randomly 100 locations among § = 1517
location; while the right panel represents the which pairwise have symmetric copula model.

Copula models proposed for modeling 2m air temperature dataset

By adopting the results obtained in the pre-processing section, the locations implemented in the modeling
will be randomly selected from § = 1517 locations to ensure consistency with the outcomes of the
previous section: The northeast region of Iraq will be excluded from the Modeling, due to the spatial non-
stationary with the remaining region. In other words, the GEV marginals of this region have different
behaviour from others; the process U(s) at location s which does not have extreme-value dependences; and
also, does not have symmetric copula will be excluded from the modeling also. The 2m air temperature
spatial process U(s) in 50 locations have been randomly selected, 40 for modeling and 10 for validation.
The latter locations will not be used in modeling. Most of these locations are in Iraq and small numbers are
sited around the border of the west and south of Irag, which have the same behavior as the majority of
locations. The coordinates of the selected locations are pointed out in Figure 4.

Locations chosen for modeling and validation

T

37.5+

35.0 1

Latitude
w
N
(6,

30.0 1

27.5 0 g i i
37.5 40.0 425 45.0 47.5

Longitude
Figure 4: The coordinates of the selected locations of modeling and validation. The red dots represent the
locations that will use in the modeling, while the green one will be for validation

According to the results of the preprocessing, a symmetric extreme-value Copula model is proposed with
different Pickands dependence functions. One parameter extreme copula family (Hisler-Reiss, Gumbel,
and Galambos), and two parameters family, such as t-EV defined respectively in Equations (10), (12), (13)
and (14) are chosen for modeling. Traditionally, in one-parameter models, the tail dependence strength
between two extreme random variables is controlled by this parameter. To extend this concept to spatial
context, should this parameter be varying across the distance h = ||s — t|| between the pairwise locations
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(s,t) € §, so that these parameters measure the tail dependence strength between (X (s),X(s + h)) or
equivalently (ﬁ(s),ﬁ(s+h)) separated by the distance h, under isotropy assumption. Due to the

dependence strength varying with each pairwise separated by a distance h, the parameters will consider as
a function of distance. So, models A will consider the parameter varying across the distance with
coefficient §; model B, the parameter varying across h according to exponential dependence strength;
models C will be according to power exponential; and model D with Cauchy. So that the proposed models
will be

1. Hiusler-Reiss A with parameter, A = Sh, 8 > 0.
2. Hiusler-Reiss B with parameter, 22 = (1 — p(h))logn, where p(h) = exp(—h/c), and, o > 0.

3. Hisler-Reiss C with parameter, 22 = (1 — p(h))logn, where p(h) = exp(—(h/0)®), and
g,6 > 0.

4. Hisler-Reiss D with parameter, A2 = (1 — p(h))logn, where, p(h) =1 — (1 + (h/0)?)?), and
g,6 > 0.

5.  Gumbel with parameter, 6 = gh, § > 0.

6.  Galambos with parameter, 8 = Bh, § > 0.

7. t-EV Awith p(h) = exp(—h/0), and, o > 0.

8. t-EV B with p(h) = exp(—(h/0)%),and 7,8 > 0.

9. tEVCwithp(h) =1-(1+ (h/0)?)?%),and s, > 0.

Due to no extreme-value models with d > 2 exist in spatial context, all models considered with d = 2, and
therefore the estimation of the parameter’s models will be by Composite Pseudo Likelihood CPL method
previously introduced. Usually, Composite likelihood method is used for estimating parameters for the
spatial extreme process. Table 1 shows the estimated parameters, log-likelihood amount, and model
selecting criterion (Akaike information criterion AIC) corresponding to each model proposed.

Table 1: Show the estimated parameters, log-likelihood, and Akaike information criterion AIC for the
models proposed

Copula model Estimated parameters log-likelihood AlC
B G F D log#(0)

Husler-Reiss A 1.406670 15.89644 -3.53219

Husler-Reiss B 0.839202 15.79983 -3.519998
Husler-Reiss C 71.5492  0.120000 16.00407 -1.545686
Husler-Reiss D 0.01508 0.105000 15.96269 -1.540508
Gumbel 1.888350 15.78417 -3.518015
Galambos 2.350493 15.74095 -3.512531
t-EV A 0.38663 2.838140 15.68348 -1.505216
t-EV B 0.15070 0.336934 3.219790 15.83652 0.4753627
t-EV C 0.10200 1.800157 1.083037 15.47631 0.5213791

The AIC information criterion in Table 1 indicates that the best four fitted models are Husler-Reiss A, B,
Gumbel, and Galambos. The slight difference in the criterion values of AIC among the four candidate
models made us consider the model which will represent the 2m air temperature has minimum divergence
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between the non-parametric and parametric of the estimated bivariate extreme-value copulas. This
divergence test will apply to the validation dataset using the Kuiback-Lebler KL method. For more
information see, [10]. Each pairwise of the validation dataset, the KL divergence between the four
estimated models and the model with non-parametric Pickands function A(-) have been done. Figure 5
shows that the Husler-Reiss A model has a divergence density of the pairwise of the validation dataset with
more skew to lift (to zero) than the three candidate models. In other words, the divergence between the
non-parametric and estimated Hisler-Reiss A copula is the minimum. For that, now we can consider the
Husler-Reiss A copula as the best extreme-value copula model to represent the 2m air temperature event in
Iraq, and they can adapt it in further studies.

Husler-Reiss A Husler-Reiss B
6000 - 10000 -
7500 -
24000~ >
2 2 5000-
S S
2000 -
2500 -
o /FI-M o-
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Kullback-Leibler Divergence Value Kullback-Leibler Divergence Value
Gumbel Galambos
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Figure 5: The densities of the Kuiback-Lebler divergence of the four candidate models (Husler-Reiss A,
Husler-Reiss B, Gumbel, and Galambos) with the non-parametric extreme-value copula, which
implemented on the validation dataset

Discussion and Conclusion

Iraq’s 2m extreme air temperature dataset {x(s)}scs has been investigated to analyze its behaviour. The
monthly block maxima have been adopted in this study, so that resulted from this block maxima procedure
marginals having GEV distribution with location u(s), a(s), and &(s) parameters. The parameters of GEV
for each marginal (location) s € §, |§| = 1571 have been estimated by the maximum likelihood method.
The estimated parameters fi(s), 6(s), andé(s) appeared slightly varying in their amounts for most of the
locations, except the northeast region. So, we can consider the events as stationary after excluding the
northeast of Iraq region, due to the mountains which caused the spatial process X(s) has non-stationary
behaviour in this region. These estimated marginals are also used to transform X(s) to a pseudo format,
U(s) = Gﬁ‘(s‘),a(s),é(s)(X(S))’ that will be used in the modeling. Examining the pseudo dataset has

asymptotic dependence /independence behaviour has been done by the upper tail 7(s,t), and lower tail
x (s, t) measures using empirical copula. The dataset showed that has asymptotic dependence property.
After examining the pseudo spatial dataset that has heavy tail dependence property, the next test is to see
whether the dataset belongs to an extreme-value copula and it is symmetric (exchangeable). For the first
one, p-value with « = 0.05 test was used between the empirical copula and extreme-value copula with
non-parametric estimated Pickands dependence function. This test was under hypotheses H,:C €
C* vs H;:C&C*, where C*:=C(u,v) = wv)4™ , A(w) is a Pickands dependence function of
w = log(v)/log(uv). The statistics p-value falls to reject #,. The symmetry (symmetry radial of the
underlying multivariate copula) test is also done by p-value under the hypothesis Hy:C = C vs 3;:C #
C, where C is the survival of C. The statistics p-value also falls to reject .

The investigation of the 2m extreme air temperature in Irag above, concluded that symmetric extreme-value
copula models are suitable to consider in modeling. Nine Copula models were constructed from one
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parameter family copulas (Husler-Reiss, Gumbel, and Galambos), and two parameters model, which is the
t-EV copula after adopting the spatial context. Such that, and regarding the Hisler-Reis model, four models
were considered. The first model A, when A trend with h, such that 1, = Bh; the second B, third C, and

forth D, we used the spirit of its parameter 1, = J(l — p(h))log(n), where p(h) is a spatial and isotropic

auto-correlation function, and h = ||s — t|| is a distance between the pairwise locations (s,t) € S. The
auto-correlation functions p have been chosen to be exponential, p(h) = exp(—h/a), o > 0; power
exponential p(h) = exp(—(h/0)%), 0,6 > 0, and Cauchy p(h) =1 — (1 + (h/0)*)?), 0,6 > 0. These
models of p used also in t-EV copula to construct three additional models, named t-EV A, B, and C.
Finally, for Gumbel and Galambos models, the same consideration in Hisler -Reiss A model has been
used, such that their parameters respectively expressed by 6, = Sh, and §, = Bh.

A sample of 50 locations was randomly selected from |§| = 1517 locations divided into two parts, 40 for
Modeling, and 10 for validation, after excluding the northeast region in Iraq from the sampling. The
composite pseudo-likelihood estimation method is used to model the extreme event. According to the AIC
information criterion, we selected 4 models as candidates. Which are: Husler-Reiss A and B; Gumbel, and
Galambos. Due to the slight difference in the criterion values among the four candidate models, we
implemented the KL divergence method between the four estimated models with the model having a non-
parametric estimated Pikands dependence function. This divergence test was implemented on the validation
dataset to choose the best-fitted model. The Husler -Reiss A wined in this competition, due to the density
around zero of all the pairwise in the validation dataset being high.
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