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Abstract 

Support vector machine initially developed to perform binary 

classification. This paper presents a multi-class support vector machine 

classifier and ordinal regression to classify the type of bone mineral 

density. This paper compares the performance of four multi-class 

approaches, one-against-all, one-against-one, Weston and Watkins, and 

Crammer and Singer. Results from our real life data conclude that 

Crammer and Singer may be better approach depending on training error 

and the percentage of correctly classified test data. Also, we find that the 

training error becomes more less when the regulization parameter C  and 

kernel parameter σ  become large. 
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 يكون افضل اسѧلوب تѧصنيفي متعѧدد الحѧالات بالاعتمѧاد             CSالتي حصلنا عليها بان اسلوب      

ان خطѧأ   لمجموعѧة الاختبѧار ، آѧذلك وجѧدنا          ة المئوية للتصنيف الصحيح   على خطأ التدريب والنسب   

 .σ و المعلمة Cالتدريب يصبح اقل آلما ازدات قيمة المعلمة 

1- Introduction 

The amount of data in the world and in our lives seems ever 

increasing and there is no end in sight. Data mining is the exploration and 

analysis of large quantities of data in order to discover meaningful 

patterns and rules. Classification, one of the most common data mining 

tasks, is built to predict a categorical variable. Support vector machine 

(SVM) is a powerful data mining technique for classifying data. The 

SVM is a training algorithm for learning classification and regression 

rules from data (Seeja and Shweta, 2011). SVM is a modern learning 

system designed by Vapnik and his colleagues (Vapnik, 2010). Based on 

statistical learning theory, which explains the learning process from a 

statistical point of view, the SVM classifier crates a hyperplane  that 

separates the data into two categories with the maximum margin. 

Originally, the SVM was a linear classifier based on the optimal 

hyperplane algorithm (Hu and Pan, 2007). This paper is composed of 

seven sections, the second section addresses the theoretical aspects of 

SVM. Section 3 contains the theoretical information about multi-class 

SVM.  Details on Ordinal regression was given in section 4. Section 5 

contains the description  and results of the our Real data. Finally, section 

6 addresses the conclusions. 

 

2- Support Vector Machine Procedure 

SVM is a group of supervised learning methods that can be applied 

to classification and regression (Ivanciuc, 2007). SVM was originally 

designed for binary classification (i.e. we have two categories of the 
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response variable). Support vector learning is based on simple ideas, the 

simplicity comes from the fact that SVM applies a simple linear method 

to the data but in a high-dimensional feature space in non-linearly related 

to the input space (Karatzoglou and Meyer, 2006). The commonly seen 

binary classification problem can be divided into two cases, linearly 

separable and linearly inseparable. The solution to the former is easy to 

obtain, but kernel functions have to be introduced to solve the problems 

in the latter case (Liang et al, 2011). Suppose there is a data set of two 

classes of samples, in which each sample is denoted by ix  with the 

corresponding class label iy , that is, 

n,.......,2,1i},1,1{y,Rx i
n

i =−∈∈                                           …….(1) 

Here, ix  is an n-dimensional vector with corresponding iy  equal to 1 if it 

belongs to a positive class or -1 if negative. In the linearly separable case, 

any hyperplane )x(f  (Decision function) should meet the condition: 

1yif1bxw)x(f
1yif1bxw)x(f

iii

iii

−=−≤+′=

=≥+′=
                                                ……..(2) 

Where w is the normalized weight vector with the same dimension as ix  

and b  is the normalized bias of the hyperplane. It should be noticed that 

w and b  make )x(f  equal to 1 or -1 if x  is on the boundary, then the 

margin, the distance from the separating hyperplane to its nearest sample, 

between the two paralleled hyperplanes can be written: 

w
2

w
bxw

2inargm =
+′

=                                                        …….(3) 

Figure (1) shows the SVM structure. The object of support vector 

classification machine is to locate the optimal separatable hyperplane 

(that can maximize the margin subject to the equation (2). Therefore, the 

optimal separatable hyperplane can be converted to the following 

optimizing problem: 
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1y)bxw(:tosubject
w
2:imizemax

ii ≥+′
                                                       ……..(4) 

With the help of the Lagrange multiplier method, we rewrite equation (4) 

in minimized the objective function: 

[ ]∑
=

−+′α−′=α
n

1i
iii 1)bxw(yww

2
1),b,w(L                                  ……(5) 

where )0( ii ≥αα  is called the Lagrange multiplier. Driving it against 

w andb , we can obtain the following two equations: 

∑
=

=α−=
∂

α∂ n

1i
iii 0xyw

w
),b,w(L                                                      …..(6) 

∑
=

=α=
∂

α∂ n

1i
ii 0y

b
),b,w(L                                                              ……(7) 

Putting the solution of equations (6) and (7) into equation (5), one can get 

the dual form of equation (5): 

jij

n

1j,i
iji

n

1i
i xxyy

2
1),b,w(L ′αα−α=α ∑∑

==

                                          ……..(8) 

Minimizing equation (8) is a convex quadratic programming problem 

under constraints  

0and0y i

n

1i
ii ≥α=α∑

=

                                                                …….(9) 

All values of iα  that corresponding to the few samples on the boundary 

are positive and the others are equal to zero. The sample with 0i >α  is 

called the support vector (Liang et al, 2011).   
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Figure (1): The Structure of SVM. 

 

In many applications, a linearly inseparable case provides better 

accuracy. It uses feature functions )x(φ . The SVM extension to nonlinear 

data sets is based on mapping the input variable into a feature space of a 

higher dimension and then performing a linear classification in that 

higher dimensional space (Abe, 2010). By using the nonlinear vector 

function ))x(),..,x(()x( 1 ′φφ=φ λ  that maps the n-dimensional input vector 

x  into the λ-dimensional feature space, the linear hyperplane )x(f in the 

feature space be 

b)x(w)x(f +φ′=                                                                          ……(10) 

Where w is a λ-dimensional vector (Abe, 2010). We use )x,x(k ji in 

training and classification instead of )x(φ where it is called kernel 

function. 

n,......,2,1j,i,)x()x()x,x(k jiji =φ′φ=                                 ……(11) 

Using equation (11), the minimization of the dual form in equation (8) in 

feature space becomes (Liang et al, 2011): 

)x,x(kyy
2
1),b,w(L jij

n

1j,i
iji

n

1i
i αα−α=α ∑∑

==

                                 ……(12) 

The hyperplane can be calculated as: 

 
Class 1 

Class 2 
Support vectors 

w'x+b=1 

w'x+b= -1  

Margin 
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 ]b)x,x(ky[sign)x(f ji

n

i
ii +α= ∑                                                  ……(13) 

There are several popular kernel functions such as linear, polynomial, and 

radial basis. 

 

3- Multi-class Support Vector Machine 

Originally, SVM was developed to perform binary classification 

(i.e. two categories). However, applications of binary classification may 

be limited in many applications (Sangeetha and Kalpana, 2011). The 

SVM classifier has to be modified to work with multi-class classification 

problems (i.e. when there are three or more categories)  

(Monfrini and Guermeur, 2011). Many multi-class SVM (MSVM) 

classification approaches decompose the training data into several binary 

classes. Some like one-against-one, one-against-all. Others are depending 

on one single objective function like Weston and Watkins and Crammer 

and Singer. Figure (2) shows the basic structure of multi-class 

approaches. 

 

 
Figure (2):a- OAA and OAO Methods, b- WW and CS Methods 
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3-1 One-Against- All Approach 

The one- against- all (OAA) support vector machine approach is 

the simplest of MSVM approaches. Assume that there are k  classes 

(categories) that we want to classify. In this approach we construct k  

binary SVM classifiers to separate each class from the rest, like class 1 

(positive) against all other classes (negative). Then the new objects are 

assigned to the class that has a positive vote and the largest distance to its 

hyperplane (Hsu and Lin, 2002), (Abe, 2010), and (Statnikov et al, 2011). 

Consider we have k - class, for a OAA approach we determine k  direct 

decision functions that separate one class from the remaining class. So, 

there are k  decision functions: 

)k(
1

)k(

)2()2(

)1()1(

b)x()w(

b)x()w(

b)x()w(

+φ′

+φ′

+φ′

Μ
                                                                        ….(14) 

and say x  is in the class which has  the largest value of the decision 

function, 

class of ]b)x()w[(maxargx )i()i(
k,..,2,1i +φ′≡ =                            …..(15) 

 

3-2 One-Against-One Approach 

Another major method is called the one-against-one (OAO) 

approach. Here we construct binary SVM classifiers to separate each pair 

of classes: class 1 against class 2, class 1 against class 3, …., class 1k −  

against k . So, this approach constructs 2)1k(k −  binary SVM 

classifiers, and then new objects are assigned to the class that has the 

majority of votes (Statnikov et al, 2011). Let the decision function for 

class i  against class j, with the maximum margin, be (Abe, 2010): 
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ijijij b)x(w)x(D +φ′=                                                             ……….(16) 

where ijw  is the  λ-dimensional vector and  )x(D)x(D jiij −= . The 

regions 

k,...2,1ifor}ij,k,....,2,1j,0)x(Dx{R iji =≠=>=          ………(17) 

And if x  is in iR , then x  is considered to belong to class i . The problem 

is that x  may not be in any of iR . We classify x  by voting. For the input 

vector x  we calculate  

∑
=≠

=
k

1j,ji
iji ))x(D(sign)x(D                                                      ………..(18) 

where  

⎭
⎬
⎫

⎩
⎨
⎧

<−
≥

=
0xfor1
0xfor1

)x(sign                                                   ……….(19) 

And we classify x  into the class  

class of )x(Dmaxargx ik,..,2,1i=≡                                        ……….(20) 

 

3-3 Weston and Watkins, and Crammer and Singer Approaches 

The former approaches utilized binary SVM classifiers to make a 

multi-class classification. Other approaches make multi-class 

classification by considering all classes at once like the approach by 

Weston and Watkins (WW) (Weston and Watkins, 1999) and the one by 

Crammer and Singer (CS) (Crammer and Singer, 2000).These approaches 

use single optimization problem of size n)1k( −  to obtain all weight 

vectors. They construct k  two-class rules where the thm  function  

b)x(wm +φ′  separates training vectors of the class m  from the other 

vectors. Here there are k  decision functions but all are obtained by 

solving one problem. Then the decision function is: 
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class of ]b)x(w[maxargx mmk,..,2,1m +φ≡ =                            ……..(21) 

 

 

4- Ordinal Regression Model 

In many fields ordinal regression (OR) becomes the standard 

model for analyzing the effects of explanatory variables on multi-class 

response variable. In this, the response variables has ordered muli-class 

qualitative data (Normal, Osteopenia, and Osteporosis for our real data 

analysis). OR is a supervised learning of predicting categorical of ordinal 

scale, it lies somewhere between classification and regression. Many 

approaches have been developed to deal with ordinal regression, the one 

that we are interested in is to convert OR to a set of binary classification 

problems  

(Xia et al, 2007). In binary classification usually we use the term 

"success" and its estimated probabilities for the response of interest, 

p(success), and the term "not success" with p(not success). In OR the 

term "success" can be conceived of many different ways. For our real 

data the number of class of the response variable be 3 )3k( = , so the 

binary classification is: (1) Normal against the rest (Osteopenia and 

Osteporosis together), (2) Normal and Osteopenia combined against 

Osteporosis. Here our success terms are Normal and Normal with 

Osteopenia together. More generally, if an ordinal response variable y  

has k  classes )k,...,2,1k( =  then there are )1k( −  ways to make binary 

classification. The appropriate model to solve the OR is the cumulative 

logit model (proportional odds model) (Kleinbaum and Klein, 2010). 

Because there are k  classes, the model actually makes )1k( −  

classifications, each corresponding to the accumulation of probability 

across successive classes. For k  classes of the response variable with 
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probabilities k21 ,.....,, πππ the cumulative logit classifier is defined as 

(Kleinbaum and Klein, 2010): 

1k,.....,2,1k,]
)ky(p1

)ky(pln[)]ky(p[itlog −=
≤−

≤
=≤=         …….(22)                            

In regression term equation (22) be 

∑
=

−=β+α=≤
p

1i
iiki 1k,....,2,1k,x)ky(pitlog                     ….(23) 

The classification of the new data will be assigned to class k  depending 

on the maximum probability of this class or category.  

5- Application Case 

5-1 Data Description  

Osteoporosis is a major public health problem projected to generate 

an increasingly heavier social and economic toll in view of the ageing 

population worldwide. The data was taking from the study that conducted 

to find the affected variable on the Osteoporosis in women in Mosul city. 

The study consisted of 17 explanatory variables and their effect on the 

type of bone mineral density as a response variable on 344 women  

(Al-Jumaily, 2010).  

 

5-2 Results 

The response variable has three classes )3k( =  with Normal class 

(29.1%), Osteopenia (38.1%), and Osteoporosis (32.8%). The data were 

split into training data to build the MSVM (88.37%) and a sample was 

taken with (11.63%) from data to represent the test data to validate the 

MSVM. The performance of the four MSVM approaches discussed in the 

previous section (OAA, OAO, WW, and CS) has been studied. Also we 

used OR model as non MSVM. For all MSVM approaches, the radial 
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basis function (RBF), )
2

xx
exp()x,x(k 2

2

ji

ji σ−

−
= , is employed. The RBF 

dependent on Euclidean distance of jx  from ix  (one of these will be the 

support vector and the other will be the testing data point). Each binary 

classifier requires the selection of two hyperplane parameters: a 

regularization parameter C , which is set to be 1, 10, and 100, and a 

kernel parameter σ , which is set to be 0.1, 0.5, and 1. Table 1 shows the 

OR classification results. The results of the MSVM approaches are 

reported in tables (2-4). We use R2.14 and WEKA programs to get the 

results. 

 

Table (1): Ordinal regression classification results. 
 Training error Percentage of correctly classified data 

OR 0.2301 51.5% 

 

From  table (1) we notice that the value of the percentage of correctly 

classified  data still the same as compared with all multi-class SVM. 

Table (2): MSVM approaches with 1C =   
 MSVM 

approaches 

Training error No. of  SV Percentage of correctly 

classified 

OAA 0.132 299 61% 

OAO 0.134 298 62.5% 

CS 0.107 295 62.5% 
1.0=σ

 

WW 0.151 296 57.5% 

OAA 0.052 268 53% 

OAO 0.055 269 52.5% 

CS 0.032 254 60% 
5.0=σ

 

WW 0.1809 265 40% 

OAA 0.02 296 %43  1=σ  

OAO 0.023 299 42.5%  
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CS 0.0197 298 55% 

WW 0.046 299 40% 

 

In table (2) we set the value of the regularization parameter C  to be 1  

and we vary the value of kernel parameter σ  to be 0.1, 0.5, and 1. One 

could observe that the training error gradually decreases when the kernel 

parameter σ  gradually increases.  

 

Table (3): MSVM approaches with 10C =   
 MSVM 

approaches 

Training error No. of  SV Percentage of correctly 

classified data 

OAA 0.0562 254 56% 

OAO 0.0559 259 55% 

CS 0.0493 242 60% 
1.0=σ

 

WW 0.2006 249 52.5% 

OAA 0.0199 295 50% 

OAO 0.023 293 47.5% 

CS 0.0197 285 52.5% 
5.0=σ

 

WW 0.023 287 47.5% 

OAA 0.0166 296 %42  
OAO 0.0164 298 42.5%  

CS 0.0131 295 52.5% 
1=σ  

WW 0.0197 296 35% 

 

Table (4): MSVM approaches with 100C =   
 MSVM 

approaches 

Training error No. of  SV Percentage of correctly 

classified data 

OAA 0.0312 258 59% 

OAO 0.036 257 59% 

1.0=σ
 

CS 0.029 229 60% 
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WW 0.0361 241 58% 

OAA 0.0099 295 50% 

OAO 0.0098 294 50% 

CS 0.0098 277 55% 
5.0=σ

 

WW 0.0131 281 47.5% 

OAA 0.0099 298 47% 

OAO 0.0098 297 45%  

CS 0.0098 294 52.5% 
1=σ  

WW 0.0131 294 35% 

 

In table (3) and table (4)  we set the value of the regularization parameter 

C  to be 10 and 100, respectively and we vary the value of kernel 

parameter σ  to be 0.1, 0.5, and 1. One could observe that the training 

error gradually decreases when the regularization parameter C  gradually 

increases.  

 

6- Conclusions  

In this paper, we apply a classical multi class support vector 

machine approaches and ordinal regression to a real life multi-class data 

classification. The results are: 

1- The Crammer and Singer (CS) approach may perform better than 

other multi-class classification approaches including OAA, OAO, 

WW, and OR for our application case, where the training error has 

the smallest value among the other approaches. 

2- We conclude that when a regularization parameter C  and a kernel 

parameter σ  be large, the training error becomes less, although the 

percentage of correctly classified test data differs. 

3- Although, the number of support vectors varies among these 

approaches, it has not any effect on the percentage of correctly 

classified test data. 
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4- The use of ordinal regression makes )1k( − binary classification 

since the data have order form which makes it uses compared with 

the other multi-class support vector machine approaches.     
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